Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Electronic Resource  (2)
  • 2000-2004  (2)
Material
  • Electronic Resource  (2)
Years
Year
  • 1
    ISSN: 1399-0047
    Source: Crystallography Journals Online : IUCR Backfile Archive 1948-2001
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Notes: The monoclonal antibody hGR-2 F6 has been raised against the human glucagon receptor and shown to act as a competitive antagonist. As a first step in the structural characterization of the receptor, the crystal structure of the Fab fragment from this antibody is reported at 2.1 Å resolution. The hGR-2 F6 Fab crystallizes in the orthorhombic space group P21212, with unit-cell parameters a = 76.14, b = 133.74, c = 37.46 Å. A model generated by homology modelling was used as an aid in the chain-tracing and the Fab fragment structure was subsequently refined (final R factor = 21.7%). The structure obtained exhibits the typical immunoglobulin fold. Complementarity-determining regions (CDRs) L1, L2, L3, H1 and H2 could be superposed onto standard canonical CDR loops. The H3 loop could be classified according to recently published rules regarding loop length, sequence and conformation. This loop is 14 residues long, with an approximate β-hairpin geometry, which is distorted somewhat by the presence of two trans proline residues at the beginning of the loop. It is expected that this H3 loop will facilitate the design of synthetic probes for the glucagon receptor that may be used to investigate receptor activity.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Perspectives in drug discovery and design 20 (2000), S. 29-42 
    ISSN: 1573-9023
    Keywords: calorimetry ; crystallography ; drug design ; ligand binding ; molecular recognition
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract The development of reliable, transferable methods that can compute the energy of interaction between protein sand ligands is a major challenge for computational chemistry. Understanding the energetics ofprotein-ligand interactions would not only provide powerful tools for prediction in structure-assisted ligand and library design, but also enrich our appreciation of the subtleties of structure that underlie molecular recognition in biological systems. One of the central problems in developing effective models is the quality and quantity of experimental data on the structure and thermodynamics of protein-ligand complexes. In this article we discuss some of the issues and some of the experimental programmes of research we have initiated to provide such data. We summarise the characteristics necessary for a model system and the experimental techniques available. This includes a discussion of calorimetry, inhibition assays and crystallographic results on series of complexes in our laboratory, including penicillin acylase, thrombin, sialidase and inparticular the oligopeptide binding protein, OppA. Aswell as discussing the lessons we have learnt about the characteristics of an ideal model system, we also present some preliminary analyses of what our combined structural and thermodynamic data have told us.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...