Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Soil use and management 17 (2001), S. 0 
    ISSN: 1475-2743
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract. Cashew soils of South Eastern Tanzania become acidified due to sulphur used for controlling powdery mildew disease (Oidium anacardii Noack). The buffering capacity of surface and subsurface horizons of 35 soil profiles of major cashew growing areas –- the Makonde plateau, its piedmont and inland plains –- was studied. The buffering capacity of surface and subsurface horizons was strongly correlated with clay content and weakly with organic carbon content. In addition, it was only weakly correlated with total exchangeable bases and available P of the surface horizon, but strongly with soil pH, base saturation and cation exchange capacity of the clay fraction of the subsurface horizon. Highly weathered sandy soils, dominant on the Makonde plateau and common on the Piedmont, had the lowest buffering capacity. Soils from the inland plains had better buffering capacities as they are generally more clayey or are less weathered. The risk of severe acidification and of a decline in productivity of cashew and of food crops is highest on the Makonde plateau. Further development and dissemination of methods which can reduce the use of sulphur are required.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    European journal of soil science 55 (2004), S. 0 
    ISSN: 1365-2389
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: The prediction of the mobility of arsenic (As) is crucial for predicting risks in soils contaminated with As. The objective of this study is to predict the distribution of As between solid and solution in soils based on soil properties and the fraction of As in soil that is reversibly adsorbed. We studied adsorption of As(V) in suspensions at radiotrace concentrations for 30 uncontaminated soils (pH 4.4–6.6). The solid–liquid distribution coefficient of As (Kd) varied from 14 to 4430 l kg−1. The logarithm of the concentration of oxalate-extractable Fe explained 63% of the variation in log Kd; by introducing the logarithm of the concentration of oxalate-extractable P in the regression model, 85% of the variation in log Kd is explained. Double labelling experiments with 73As(V) and 32P(V) showed that the As to P adsorption selectivity coefficient decreased from 3.1 to 0.2 with increasing degree of P saturation of the amorphous oxides. The addition of As(V) (0–6 mmol kg−1) reduced the Kd of 73As up to 17-fold, whereas corresponding additions of P(V) had smaller effects. These studies suggest that As(V) is adsorbed to amorphous oxides in soils and that sites of adsorption vary in their selectivity in respect of As and P. The concentration of isotopically exchangeable As in 27 contaminated soils (total As 13–1080 mg kg−1) was between 1.2 and 19% (mean 8.2%) of its total concentration, illustrating that a major fraction of As is fixed. We propose a two-site model of competitive As(V)–P(V) sorption in which amorphous Fe and Al oxides represent the site capacity and the isotopically exchangeable As represents the adsorbed phase. This model is fitted to 73As adsorption data of uncontaminated soils and explains 69% of the variation of log Kd in these soils. The log Kd in contaminated soils predicted using this two-site model correlated well with the observed log Kd (r = 0.75). We conclude that solubility of As is related to the available binding sites on amorphous oxides and to the fraction of As that is fixed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    European journal of soil science 51 (2000), S. 0 
    ISSN: 1365-2389
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Identifying ‘functional' pools of soil organic matter and understanding their response to tillage remains elusive. We have studied the effect of tillage on the enriched labile fraction, thought to derive from microbes and having an intermediate turnover time. Four soils, each under three regimes, long-term arable use without tillage (NT), long-term arable under conventional tillage (CT), and native vegetation (NV), were separated into four aggregate size classes. Particle size fractions of macro- (250–2000 μm) and microaggregates (53–250 μm) were isolated by sonication and sieving. Subsequently, densiometric and chemical analyses were made on fine-silt-sized (2–20 μm) particles to isolate and identify the enriched labile fraction. Across soils, the amounts of C and N in the particle size fractions were highly variable and were strongly influenced by mineralogy, specifically by the contents of Fe and Al oxides. This evidence indicates that the fractionation procedure cannot be standardized across soils. In one soil, C associated with fine-silt-sized particles derived from macroaggregates was 567 g C m−2 under NV, 541 g C m−2 under NT, and 135 g C m−2 under CT, whereas C associated with fine-silt-sized particles derived from microaggregates was 552, 1018, 1302 g C m−2 in NV, NT and CT, respectively. These and other data indicate that carbon associated with fine-silt-sized particles is not significantly affected by tillage. Its location is simply shifted from macroaggregates to microaggregates with increasing tillage intensity. Natural abundance 13C analyses indicated that the enriched labile fraction was the oldest fraction isolated from both macro- and microaggregates. We conclude that the enriched labile fraction is a ‘passive' pool of soil organic matter in the soil and is not derived from microbes nor sensitive to cultivation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK; Malden , USA : Blackwell Publishing Ltd/Inc
    European journal of soil science 55 (2004), S. 0 
    ISSN: 1365-2389
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Isotopically exchanged phosphorus is difficult to determine in soils that strongly sorb P (so that there is little P in solution) and in soils with large concentrations of colloidal P in soil suspensions. A method is proposed in which anion exchange membranes (AEM) are added to the soil suspension after an initial period of isotopic exchange with 32P-labelled phosphate ions. Isotopically exchanged P, termed EAEM, is calculated from the ratio of labelled phosphate ions to the total phosphate ions on the membrane. The EAEM was compared with the E value measured in an aqueous soil extract (EWater extract) for 14 soils with different degrees of P sorption. The two methods gave similar results in soils with large P concentrations in an aqueous soil extract. However, EWater extract values significantly exceeded the EAEM values by up to 18-fold when soluble P was near the determination limit (0.008 mg P l−1). In a second experiment, two Ferralsols received further P from inorganic and plant sources and were incubated for 7 days. Treatment effects on labile P were erroneous as detected by the EWater extract but were significant as detected with the AEM method. Third, EAEM values were followed in a Lixisol and a Ferralsol which received labelled phosphate ions with carrier just before the beginning of a 23-day incubation. The approximate recovery of added inorganic P in the EAEM value suggested that this method adequately samples labile P in P-sorbing soils. All these results showed that errors in the determination of E values for soils with very small concentrations of P in the soil solution are reduced using the proposed method.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    European journal of soil science 54 (2003), S. 0 
    ISSN: 1365-2389
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Risk assessment of heavy metals in soil requires an estimate of the concentrations in the soil solution. In spite of the numerous studies on the distribution of Cd and Zn in soil, few measurements of the distribution coefficient in situ, Kd, have been reported. We determined the Kd of soils contaminated with Cd and Zn by measuring metal concentrations in the soil and in the soil solution and attempted to predict them from other soil variables by regression. Soil pH explained most of the variation in logKd (R2 = 0.55 for Cd and 0.70 for Zn). Introducing organic carbon content or cation exchange capacity (CEC) as second explanatory variable improved the prediction (R2 = 0.67 for Cd and 0.72 for Zn), but these regression models, however, left more than a factor of 10 of uncertainty in the predicted Kd. This large degree of uncertainty may partly be due to the variable degree of metal fixation in contaminated soils. The labile metal content was measured by isotopic dilution (E value). The E value ranged from 18 to 92% of the total metal content for Cd and from 5 to 68% for Zn. The prediction of Kd improved when metals in solution were assumed to be in equilibrium with the labile metal pool instead of the total metal pool. It seems necessary therefore to discriminate between ‘labile’ and ‘fixed’ pools to predict Kd for Cd and Zn in field contaminated soils accurately. Dilute salt extracts (e.g. 0.01 m CaCl2) can mimic soil solution and are unlikely to extract metals from the fixed pool. Concentrations of Cd and Zn in the soil solution were predicted from the concentrations of Cd and Zn in a 0.01 m CaCl2 extract. These predictions were better correlated with the observations for field contaminated soils than the predictions based on the regression equations relating logKd to soil properties (pH, CEC and organic C).
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Oxford, UK; Malden, USA : Blackwell Science Ltd
    European journal of soil science 55 (2004), S. 0 
    ISSN: 1365-2389
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: We sought to examine the distribution of carbon (C) decomposition within the framework of the soil pore system. Soils were sampled from a transect having a natural gradient in pore-size distribution. After the addition of labelled wheat straw (13C) the repacked soil columns were incubated (25°C) at soil water matric potentials of either −75 kPa or −5 kPa and for either 4 or 90 days. Pore-size distribution was determined for each soil column after incubation and soils were then analysed for soluble C, label-derived residual C, label-derived and native biomass C, nematode abundance, and ergosterol concentration as an indicator of fungal biomass. Overall, the data suggested that pore-size distribution and its interaction with soil water give rise to a highly stratified biogeography of organisms through the pore system. This results in different rates of decomposition in pores of different size. Added plant material seemed to decompose most rapidly in soils with a relatively large volume of pores with neck diameters c. 15–60 µm and most slowly in soils with large volumes of pores with neck diameters 〈 4 µm. Regression analysis suggested that at matric potentials of both −75 kPa and −5 kPa the fastest decomposition of organic substrate occurred close to the gas–water interface. This analysis also implied that slower rates of decomposition occur in the pore class 60–300 µm. Correlations between the mass of soil biota and the pore volume of each pore class point to the importance of fungi and possibly nematodes in the rapid decomposition of C in the pores c. 15–60 µm during the early stages of decomposition.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1572-9680
    Keywords: biochemical composition ; cation exchange capacity ; particle size fractions ; soil organic matter
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Soil organic matter (SOM) has a key role in maintaining soil fertility in weathered soils in the tropics. This study was conducted to determine the contribution of different SOM fractions to the cation exchange capacity (CEC) of a tropical soil as influenced by organic matter inputs of different biochemical composition. Soil samples were collected from a 16-yr old arboretum established on a Ferric Lixisol, under five multipurpose tree species: Leucaena leucocephala, Dactyladenia barteri, Afzelia africana, Pterocarpus santalinoides, and Treculia africana. Fractions were obtained by wet sieving and sedimentation after dispersion with Na2CO3. Fractions larger than 0.053 mm were separated into mineral and organic components by flotation on water. Relationships between CEC and pH were determined using the silverthioureum-method. For all treatments the organic fractions had the highest CEC, expressed on a dry matter basis, and the CEC of the fractions smaller than 0.053 mm was inversely related to their particle size: clay (〈 0.002 mm) 〉 fine silt (0.002–0.02 mm) 〉 coarse silt (0.02–0.053 mm). A positive correlation (significant at the 0.01 probability level) existed between the slope of the fitted CEC-pH relationships and the organic C concentrations of the whole soil and both silt fractions. The clay and fine silt fractions were responsible for 85 to 90% of the CEC of the soil. Organic inputs with a high C/N and lignin/N ratio produced fine and coarse silt sized SOM fractions with the highest charge density. Therefore, inputs of slowly decomposing organic residues seem to be promising for increasing the CEC of highly weathered soils.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 31 (2000), S. 261-269 
    ISSN: 1432-0789
    Keywords: Key words Cover crops ; Mixed residues ; Microbial biomass ; N-mineralization ; Soil organic matter fractions
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract  The fate of 15N-labeled plant residues from different cover-cropping systems and labeled inorganic N fertilizer in the organic, soil mineral, microbial biomass and soil organic matter (SOM) particle-size fractions was investigated in a sandy Lixisol. Plant residues were from mucuna (legume), lablab (legume), imperata (grass), maize (cereal) and mixtures of mucuna or lablab with imperata or maize, applied as a surface mulch. Inorganic N fertilizer was applied as 15N-(NH4)2SO4 at two rates (21 and 42 mg N kg–1 soil). Total N release from mucuna or lablab residues was 2–3 times higher than from the other residues, whereas imperata immobilized N throughout the study period. In contrast, 15N was mineralized from all the plant residues irrespective of the mineralization–immobilization pattern observed for total N. After 168 days, 69% of soil mineral N in mucuna- or lablab-mulched soils was derived from the added residues, representing 4–8% of residue N, whereas 9–30% of inorganic N was derived from imperata, maize and the mixed residues. At the end of the study, 4–19% of microbial biomass N was derived from the added residue/fertilizer-N, accounting for 1–3% of added residue-N. Averaged across treatments, particulate SOM fractions accounted for less than 1% of the total soil by weight but contained 20% of total soil C and 8% of soil N. Soils amended with mucuna or lablab incorporated more N in the 250–2000 μm SOM pool, whereas soil amended with imperata or the mixed residues incorporated similar proportions of labeled N in the 250–2000 μm and 53–250 μm fractions. In contrast, in soils receiving the maize or inorganic fertilizer-N treatments, higher proportions of labeled N were incorporated into the 53–250 μm than the 250–2000 μm fractions. The relationship between these differences in residue/fertilizer-N partitioning into different SOM particle-size fractions and soil productivity is discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 32 (2000), S. 328-339 
    ISSN: 1432-0789
    Keywords: Key words Biomass transfer ; Maize ; Phosphorus ; Resin extractable phosphorus ; Triple superphosphate
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract  The effects of organic residues and inorganic fertilizers on P availability and maize yield were compared in a Nitisol of western Kenya. Leaf biomass of Calliandra calothyrsus, Senna spectabilis, Croton megalocarpus, Lantana camara, Sesbania sesban, and Tithonia diversifolia were incorporated into the soil at 5 Mg ha–1 for six consecutive seasons in 3 years and responses compared with those following the application of 120 kg N ha–1, 0 kg P ha–1 (0P); 120 kg N ha–1, 10 kg P ha–1; and 120 kg N ha–1 25 kg P ha–1 as urea and triple superphosphate (TSP); K was supplied in all treatments. Addition of Tithonia, Lantana and Croton increased soil resin-extractable P over that of fertilizer-amended soil throughout the first crop, but the amounts in the former treatments became similar to those for soils amended with inorganic fertilizers for subsequent crops. Addition of Sesbania, Calliandra and Senna had a similar effect on resin P as inorganic fertilizers. Total maize yields after six seasons were tripled by the application of Tithonia compared to 0P, and were higher than those of the Calliandra, Senna, Sesbania and Lantana treatments, and similar only to that of the Croton treatment. P recovered in the above-ground biomass and resin P, immediately after the implementation of the treatments, was higher in the Senna, Sesbania, Croton, Lantana and Tithonia (35–77%) treatments than in the inorganic fertilizer treatments (21–27%). The P content of organic residues, and the soluble C:total P ratio, were the main residue parameters predicting soil P availability and maize yield. All organic residues used in this study can replace inorganic fertilizers for the enhancement of P availability and maize production, while an additional benefit could be obtained from the use of Croton, Lantana and Tithonia.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 32 (2000), S. 234-242 
    ISSN: 1432-0789
    Keywords: Key words Imperata ; Mulch ; Lablab ; Maize ; Mucuna
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract  Reliable estimates of symbiotically fixed N2 in herbaceous legumes are important in order to determine their role in maintaining or improving N levels in tropical low-external-input farming systems. We have studied the effects of different management systems on the suitability of two non-N2-fixing reference crops, imperata [Imperata cylindrica (L.) Rauescel] and maize (Zea mays L.), for estimating N2 fixation in mucuna [Mucuna pruriens (L.) DC var. utilis (Wright) Bruck] and lablab [Lablab purpureus (L.) Sweet] in the field. The total-N-difference (TND) method of estimating N2 fixation was compared to the 15N-isotope-dilution (ID) technique. The two methods did not differ with respect to estimates of N2 fixation under in situ mulch (IM) systems. In contrast, under live-mulch (LM) systems the TND method underestimated N2 fixed in mucuna by 29% and in lablab by 40% compared to estimates made with the ID method. Irrespective of the treatment, estimates of N derived from fixation in both herbaceous legumes were not influenced by either of the reference plants. Using the ID technique, the proportion of N2 derived from fixation in mucuna and lablab at 12 weeks varied from 52% to 90% depending on whether the treatments were N fertilized, inoculated or uninoculated, cover-crop systems. In view of the nature of cover-crop systems in the derived savanna of West and Central Africa, where imperata is usually present as a weed or maize is grown in IM or LM systems, imperata or maize could be used to estimate N2 fixation and N contributions of the legumes to soil fertility and subsequent crop improvements.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...