Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Electronic Resource  (3)
  • 2000-2004  (3)
Material
  • Electronic Resource  (3)
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of food science 67 (2002), S. 0 
    ISSN: 1750-3841
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Process Engineering, Biotechnology, Nutrition Technology
    Notes: : Using a cross-over design, two studies were conducted to measure calcium absorption from calcium-set tofu compared to milk in healthy, premenopausal women. In “study 1,” calcium absorption from tofu set with CaCl2 was determined in Caucasian women by fecal recovery of the stable isotope, 44Ca. In “study 2,” calcium absorption was determined in Asian women from tofu set with CaSO4 by appearance of 45Ca in serum after 5 h. Analysis of the studies, both separately and pooled, showed that calcium absorption was similar between calcium-set tofu and milk. Calcium-set tofu is a concentrated source of bioavailable calcium.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-5036
    Keywords: Bradyrhizobium japonicum ; genistein ; soybean ; strain competitiveness
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract In the soybean-B. japonicum symbiosis, genistein has been identified as one of the major compounds in soybean seed and root exudates responsible for inducing expression of the B. japonicum nodYABC operon. In this study, we have tested the possibility that genistein treatment prior to inoculation can increase the competitiveness of the treated B. japonicum strain under both greenhouse and field conditions. Two mutants of the two B. japonicum strains each with a different antibiotic resistant marker were selected. They were tested with one or the other treated with genistein. The results showed genistein treated mutants had higher levels of nodule occupancy than the untreated mutant or parent strain under greenhouse conditions. Mutants from 532C had higher nodule occupancies than mutants from USDA110, especially at 15 °C. In the more complex field environment, genistein treated mutants formed fewer nodules than the untreated mutants. The contradictory results of strain competitiveness for greenhouse and field experiments are discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-5036
    Keywords: Bradyrhizobium japonicum ; genistein ; mineral nitrogen ; nodulation ; soybean
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Genistein is the major root produced isoflavonoid inducer of nod genes in the symbiosis between B. japonicum and soybean plants. Reduction in the isoflavonoid content of the host plants has recently been suggested as a possible explanation for the inhibition of mineral nitrogen (N) on the establishment of the symbiosis. In order to determine whether genistein addition could overcome this inhibition, we incubated B. japonicum cells (strain 532C) with genistein. Mineral N (in the form of NH4NO3) was applied at 0, 20 and 100 kg ha-1. The experiments were conducted on both a sandy-loam soil and a clay-loam soil. Preincubation of B. japonicum cells with genistein increased soybean nodule number and nodule weight, especially in the low-N-containing sandy-loam soil and the low N fertilizer treatment. Plant growth and yield were less affected by genistein preincubation treatments than nitrogen assimilation. Total plant nitrogen content was increased by the two genistein preincubation treatments at the early flowering stage. At maturity, shoot and total plant nitrogen contents were increased by the 40 μM genistein preincubation treatment at the sandy-loam soil site. Total nitrogen contents were increased by the 20 μM genistein preincubation treatment only at the 0 and 20 kg ha-1 nitrate levels in clay-loam soil. Forty μM genistein preincubation treatment increased soybean yield on the sandy-loam soil. There was no difference among treatments for 100-seed weight. The results suggest that preincubation of B. japonicum cells with genistein could improve soybean nodulation and nitrogen fixation, and at least partially overcome the inhibition of mineral nitrogen on soybean nodulation and nitrogen fixation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...