Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Electronic Resource  (2)
  • 1995-1999  (2)
  • Alkaloids  (1)
  • Carbon-rich amorphous alloys  (1)
Material
  • Electronic Resource  (2)
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Materials research innovations 1 (1997), S. 117-129 
    ISSN: 1433-075X
    Keywords: Keywords Diamonds ; Precipitation ; Metallic solutions ; Carbon-rich amorphous alloys
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract  We describe herein a new process for the synthesis of diamond in the presence of various metals and atomic H in a microwave plasma. Along with the traditional high pressure high temperature (HPHT) process and the chemical vapor deposition (CVD) process, for diamonds synthesis this makes it a third route for this purpose. Starting materials used are intimate mixtures of various forms of carbon with one of many metals. These are exposed to a pure H2 microwave-assisted plasma at temperatures in the range 600–1100º C. Novel amorphous alloys are formed containing 40 to 70 atomic percent of carbon. From these liquid alloys diamonds are precipitated with temperature change and/or with possible evaporation of complex, hydrogen-rich Me−C−H species. The carbon content of the metallic liquid drops sequentially down to 5–6%C as more and more diamonds are precipitated therefrom. Au, Ag, Fe, Cu, Ni, and many other metals are used in most runs. Others e.g. La, Mn, Sn, each give distinctive habits or morphology to the diamonds grown. Single crystals have been grown from these MexCyHz metallic liquids on natural diamond substrates, using the same low pressure solid state source (LPSSS) technique. They show high perfection. A mechanism is proposed quite analogous to the HPHT process, to explain this precipitation from metallic solutions, with atomic hydrogen ”substituting” for high pressure.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-1561
    Keywords: Alkaloids ; mass spectrometry ; infrared spectroscopy ; amphibians ; ants ; decahydroquinolines ; quinolizidines
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract Three alkaloids—two minor decahydroquinolines (DHQs) and a major quinolizidine—were detected in an extract of a Brazilian myrmicine ant (Solenopsis (Diplorhoptrum) sp. picea group). One DHQ (3) was identical to a known frog-skin alkaloid, cis-195A (cis-5-methyl-2-propyldecahydroquinoline), while the second DHQ, an isomer of 3, designated 195J, was assigned a tentative cis-2-methyl-5-propyldecahydroquinoline structure (2) based on mass and infrared spectra. The third alkaloid proved identical to the frog-skin alkaloid 195C, for which a structure had not been previously proposed. Mass and infrared spectral analysis, including chemical ionization tandem mass spectrometry, indicated a 4-methyl-6-propylquinolizidine structure (1) for 195C. The four possible diastereomers were synthesized and the (6Z,10E)-4-methyl-6-propylquinolizidine diastereomer (1b) was identical to the natural alkaloid. Skin extracts of a population of a Madagascan mantelline frog contained, among other alkaloids, minor amounts of the same alkaloid triad 1–3 with 1 again predominating. The common occurrence of alkaloids 1–3 in both ant and frog supports the hypothesis that ants are a likely dietary source for sequestered frog-skin alkaloids and brings to six, the alkaloid classes common to ant and frog.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...