Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0428
    Keywords: Keywords Insulin resistance ; syndrome X ; phosphoenolpyruvate carboxykinase ; glucose ; insulin ; triglycerides ; cholesterol ; obesity ; transgenic rats.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Aims/hypothesis. Obesity, glucose intolerance, dyslipidaemia and hypertension are a cluster of disorders (syndrome X) affecting many people. It has been hypothesised that these abnormalities are caused by insulin resistance, but definitive proof is lacking. We have developed transgenic rats in which the rate-limiting gluconeogenic enzyme, phosphoenolpyruvate carboxykinase, is non-insulin responsive. The aim of our study was to investigate whether syndrome X develops in these animals and if a high-fat diet interacts with this genetic defect. Methods. Chow-fed transgenic and control rats aged 1, 3, 6 and 17 months and a subgroup of transgenic and control rats fed chow plus cafeteria foods for 6 months were examined for features of syndrome X. Results. At 3 months, transgenic rats had fasting and postprandial hyperinsulinaemia, mild obesity (in abdominal and, to a lesser extent, peripheral regions) and fasting hypercholesterolaemia. Hypertriglyceridaemia was evident after 6 months while hyperglycaemia was apparent at 17 months. Hypertension had not developed by 17 months. The effect of a high-fat diet on insulin, glucose, body weight and body fat was more dramatic than the effect of the transgene alone while the effect of a high-fat diet on cholesterol and triglyceride was similar to the transgene. This illustrates that a high-fat diet is a potent catalyst for many abnormalities associated with syndrome X. There was no evidence of an additive effect of the high-fat diet plus transgene. Conclusion/interpretation. Therefore rats genetically-engineered with a non-insulin responsive gluconeogenic enzyme develop several aspects of syndrome X, supporting the hypothesis that insulin resistance initiates this cluster of disorders. [Diabetologia (1999) 42: 419–426]
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-203X
    Keywords: Key words Somaclonal variation ; Allium cyaneum ; Fluorescence in situ hybridization ; Autotetraploid regenerants
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Investigations were performed to confirm the optimal in vitro culture condition for callus induction and plant regeneration, to observe if somoclonal variation occurs among regenerated plants at the ploidy level and to analyse the chromosomal location of 5S and 18S-26S rRNA gene families using fluorescence in situ hybridization in callus-derived plants of Allium cyaneum. High-est callus initiation was achieved with bulb explants cultured on MS medium supplemented with 2,4-D and BAP at 1 mg l–1 each. A total of 195 plants was obtained when using MS medium supplemented with 1 mg l–1 NAA and 5 mg l–1 BAP; about 92% were diploid having 2n=16; 8% showed a variation in ploidy level. Using digoxigenin-labelled 5S rRNA and biotin-labelled 18S-26S rRNA gene probes, we compared the fluorescence in situ hybridization patterns of autotetraploid plants with the A. cyaneum wild type. The 5S rRNA gene sites were detected on the interstitial region in the short arm of chromosome 4 and on the interstitial region in both arms of chromosome 7. The 18S-26S rRNA gene sites were detected on the terminal region of the short arm, including the satellite of chromosome 5, as well as on a part of chromosome B. The chromosomal location of both rRNA genes in regenerated autotetraploid plants corresponded to those of the wild species.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...