Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Electronic Resource  (4)
  • 1995-1999  (4)
  • P supplying capacity  (2)
  • wheat  (2)
  • Basal dressing  (1)
  • oxygen uptake
Material
  • Electronic Resource  (4)
Years
Year
Keywords
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Nutrient cycling in agroecosystems 47 (1996), S. 115-122 
    ISSN: 1573-0867
    Keywords: adsorption isotherms ; P adsorption ; P fractions ; P supplying capacity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Studies were conducted to investigate the P sorption characteristics and P fractions in eight intensively fertilized soils collected from southern and central Norway. Adsorption of P at the initial P concentrations in the soil solution was very high in the Særheim clay loam soil which contained high amounts of organic C and clay. Adsorption data were fitted well to the classical Langmuir equation. The P affinity constant (k), adsorption maximum (b) and maximum buffer capacity (mbc) calculated from this equation differed considerably among soils. The P affinity constant (r=0.96,p=0.01) and maximum buffer capacity (r=0.97,p=0.01) were highly and positively correlated to organic C. None of the soil parameters were related to adsorption maximum. Phosphorus desorption from the heavily fertilized soils varied widely and depended on the initial P status of the soil and soil texture. The ratio between desorbed P and total P was significantly correlated to sorption parameters. Multiple regression analysis showed that total P positively and organic C negatively affected P desorption in the soils. Iron-P was a major P sink in these soils and it was related to clay content (r=0.69,p=0.1) and organic P (r=0.76,p=0.0.5), but it did not relate to average P removed per harvest (RPH). Calcium-P and Al-P were not related to any of the soil parameters but these fractions were the major contributors to RPH as expressed by a multiple regression equation: RPH=0.397+0.0016 × Ca-P + 0.0012 × Al-P (r=0.84,p=0.05). High content of inorganic fractions shows that most of the residual P may be plant available, albeit at reduced rate with time, in these soils but the availability will depend on soil types.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-0867
    Keywords: heavily fertilized soils ; P supplying capacity ; P uptake ; residual P ; soil test methods ; temperature
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Nine heavily fertilized soils were collected from southern and central Norway. A greenhouse experiment in the phytotron was conducted to evaluate the P supplying capacities of these soils at different temperatures (9, 12 and 18 °C). The crops were grown in succession and the sequence was oat, rye grass (cut twice), oat, rape and oat. Effect of temperature on dry matter (DM) yield and P uptake was more marked up to the fourth crop but the effect varied among crops. The DM yields of oat and rape increased with increasing temperature but the opposite was the case with rye grass. The yield differences among soils at 12 °C were highly significant (p 〈 0.01) in contrast to 9 and 18 °C. The amount of P taken up by plants in these soils was highest at 18. °C. The P supplying capacity was highest in the soils with higher content of organic P. Generally, the soils of very fine and coarse texture classes failed to supply enough P to crops to avoid P deficiency in the successive crops. Soil P test (P-NH4-lactate) values in most of the soils increased with increasing temperatures. The highest temperature effect was seen in the Særheim sand soil. Soil P test extractants P-AL, Bray-1 and Colwell-P were used to determine P in the soil after each harvest and the soil P test values were compared with P uptake by crops. Only the P-AL extractant was significantly correlated to cumulative P removal (CPR) by plants in most of the soils. Regression equation was calculated for each soil. The value of removed P per harvest (RPH) varied from 10.33 to 20.87 mg P kg−1 soil. Phosphorus drawdown slope was determined for each soil and the number of consecutive harvests necessary to reduce the P-AL value to a normal level (110 mg P kg−1 soil) was calculated. The drawdown slope varied widely (1.257–2.801) and this reflected the P buffer capacity and the number of crops required to lower the soil test P value to a normal level. The highest drawdown slope was found in the soils with higher P supplying capacities. The Bray-1 extractant was significantly correlated in the soils with higher buffer capacity but the Colwell-P method did not show significant correlation in any of the soils.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Nutrient cycling in agroecosystems 45 (1995), S. 163-167 
    ISSN: 1573-0867
    Keywords: Basal dressing ; Se-enriched fertilizers ; Se-uptake ; soil texture ; top-dressing ; wheat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract A multisite field experiment was conducted to study the effect of topdressed Se-enriched Ca(NO3)2 (CN) and basal applied NPK on the selenium (Se) concentration in spring wheat (Triticum aestivum L.). Selenium was applied either through CN (at the rates of 0, 6.45, and 12.91 g Se ha−1) or NPK (5.83 g Se ha−1). Selenium concentration in wheat grains increased consistently with increasing rate of Se-enriched CN or NPK. However, the superiority of Se-enriched CN over NPK in raising the Se concentration in wheat grain depended on location and growth conditions. At the same rate both methods of Se-application were found to be equally effective in raising the Se concentration of wheat grains. The Se concentration of grain was generally higher in the light textured soils than in the medium to heavy textured soils. Without Se application, the Se-concentration in wheat grain was about 16µg kg−1 which is regarded insufficient to meet the Se requirement for Se in animal and human. Calcium nitrate enriched with 25 mg Se kg−1 (6.45 g Se ha−1) increased the Se concentration in wheat grain to a desired level.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Water, air & soil pollution 103 (1998), S. 405-421 
    ISSN: 1573-2932
    Keywords: alum shale ; Cd ; Cu ; extractability ; metal partitioning ; Ni ; Norway ; organic materials ; plant uptake ; wheat ; Zn
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract Soils developed on sulphide-bearing shale (alum shale) in Norway contain naturally high amount of heavy metals. We conducted a greenhouse pot experiment to study the effect of four rates (0, 2, 4, and 8%) and three sources (cow manure, pig manure and peat soil) of organic matter in partitioning and distribution, extractability and plant uptake of Cd, Cu, Ni and Zn in an alum shale soil. Sequential extraction scheme was used to determine the distribution patterns of metals in the soil. DTPA was used for extracting the metals from the soil. Wheat (Triticum aestivum) was used as a test crop to study the plant uptake of metals. The highest amount of Cd was present in the exchangeable fraction, irrespective of the rate and source of organic matter applied. Copper, Ni, and Zn, on the other hand, were present only in small quantities in this fraction. The largest fraction of Cu was associated with organic matter and the amounts present in the oxide, carbonate and exchangeable fractions were very small. Nickel and Zn were found mainly in the residual fraction. Increasing rates of cow and pig manure decreased the amounts of Cd and Ni associated with the exchangeable fraction whereas, the addition of peat soil at the same rate increased the amounts of these metals associated with this fraction. This effect of organic matter was primarily associated with the change in soil pH caused by different organic matter sources. The DTPA-extractable metals were decreased with increasing rates of organic matter application, irrespective of its source. Grain and straw yields of wheat were decreased with increasing rates of organic matter. The application of organic matter increased the Cu and Zn concentrations in both grain and straw. The concentration of all metals was lower in plants grown in the cow manure amended soil as compared to those grown in the soil amended with either pig manure or peat soil. These results sugggest that the source of organic matter was a determining factor for metal distribution in the soil and for metal uptake by plants. In this study cow manure slightly increased the soil pH and thus was more effective than either pig manure or peat soil in reducing the plant uptake of metals but in general the efficiency of the organic material in reducing heavy metal uptake was small.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...