Library

Your search history is empty.
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Electronic Resource  (1)
  • 1995-1999  (1)
  • IGF-1  (1)
  • 1
    ISSN: 1432-0428
    Keywords: Keywords Diabetes mellitus ; insulin resistance ; IGF-1 ; IRS-1 ; cell growth.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Aims/hypothesis. Although both increased cell growth and impaired insulin signalling have been associated with diabetes, this association has not been investigated. Insulin-like growth factor-1 (IGF-1), a structural and functional analog of insulin, may play a part in the aberrant insulin receptor-mediated signalling observed in diabetes. Methods. To investigate the consequence of this impaired signalling on cell proliferation and transformation, we transfected Chinese hamster ovary cells with cDNA encoding a kinase-defective insulin receptor. Results. In these mutant cells, the mitogenic and metabolic effects of insulin were reduced compared with control cells (p 〈 0.05) and this was due to a dominant negative effect. In contrast, these mutant cells showed a higher mitogenic response to IGF-1 than control cells, although IGF-1 receptor expression was similar in both cell lines. There was no statistically significant difference in mitogenic response, however, to platelet-derived growth factor, basic fibroblast growth factor and heparin-binding epidermal growth factor-like growth factor. Variables of the IGF-1 signalling pathway, including tyrosine phosphorylation of insulin receptor substrate-1 and activation of mitogen-activated protein kinase and phosphatidyl inositol 3 kinase, were also augmented in mutant cells. Insulin receptor substrate-1 message and protein abundance were higher in mutant than in control cells. Moreover, mutant cells had a higher mitogenic potential in low-serum-containing medium, suggesting that these cells have a transformed phenotype. Conclusion/interpretation. These findings suggest that an impaired insulin signalling may upregulate insulin receptor substrate-1 and that this, in turn, leads to increased IGF-1 signalling, a phenomenon that is possibly associated with increased cell growth in diabetes. [Diabetologia (1999) 42: 763–772]
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...