Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical and applied genetics 92 (1996), S. 357-362 
    ISSN: 1432-2242
    Keywords: Key words Apion godmani  ;  Bean-pod weevil  ; Breeding for resistance  ;  Common bean  ; Inheritance  ;  Phaseolus vulgaris
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Apion godmani Wagner, often causes heavy losses in crops of common bean (Phaseolus vulgaris L.). Farmers need resistant bean cultivars to minimize losses, cut production costs, stabilize seed yield, and reduce pesticide use and consequent health hazards. To design effective breeding methods, breeders need new and better sources of resistance and increased knowledge of their modes of inheritance. We therefore: (1) compared sources of resistance to BPW, (2) studied the inheritance of resistance, and (3) determined whether the sources possess similar or different genes for BPW resistance. The following sources of resistance, originating from the Mexican highlands, were evaluated for 3 years at INIFAP-Santa Lucıa de Prias, Texcoco, Mexico: ‘Amarillo 153’, ‘Amarillo 169’, ‘Hidalgo 58’, ‘J 117’, ‘Pinto Texcoco’, ‘Pinto 168’, and ‘Puebla 36’. All except ‘Puebla 36’ were crossed with the susceptible cultivar ‘Jamapa’. ‘Amarillo 153’ and ‘Puebla 36’ were crossed with another susceptible cultivar, ‘Bayo Mex’. The parents, hybrids, and populations were evaluated for BPW damage in 1992. Backcrosses of the of Jamapa/Pinto 168 to the respective susceptible and resistant parents were also evaluated in 1992. All seven resistant accessions were crossed in all possible combinations, excluding reciprocals. The resulting 21 hybrids and 21 populations were evaluated for BPW damage in 1994. ‘J 117’ had the highest level of resistance to BPW. ‘Pinto Texcoco’ and ‘Puebla 36’ had the highest mean damage score of all seven sources of resistance. The hybrids between susceptible parents and resistant sources were generally intermediate. Two genes segregating independently controlled the BPW resistance in each accession. One gene, Agm, has no effect when present alone, whereas the other gene, Agr, alone conferred intermediate resistance. When both genes were present, resistance to BPW was higher. Based on mean BPW damage scores, all 21 hybrids and their populations, derived from crosses among seven resistant accessions, were resistant. However, data from individual plant damage scores in populations of Amarillo 169/Pinto 168 and Pinto Texcoco/Pinto 168 suggested that at least one gene in each of the three accessions was non-allelic. Data also indicated that ‘Amarillo 169’ had a dominant gene that conferred high levels of BPW resistance, irrespective of the alleles at the other locus; and that ‘Pinto Texcoco’ and ‘Pinto 168’ possessed two different genes for intermediate resistance.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...