Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Electronic Resource  (1)
  • 1995-1999  (1)
Material
  • Electronic Resource  (1)
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 108 (1998), S. 9246-9252 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The density matrix renormalization group (DMRG) method introduced by White for the study of strongly interacting electron systems is reviewed; the method is variational and considers a system of localized electrons as the union of two adjacent fragments A,B. A density matrix ρ is introduced, whose eigenvectors corresponding to the largest eigenvalues are the most significant, the most probable states of A in the presence of B; these states are retained, while states corresponding to small eigenvalues of ρ are neglected. It is conjectured that the decreasing behavior of the eigenvalues is Gaussian. The DMRG method is tested on the Pariser-Parr-Pople Hamiltonian of a cyclic polyene (CH)N up to N=34. A Hilbert space of dimension 5.×1018 is explored. The ground state energy is 10−3 eV within the full CI value in the case N=18. The DMRG method compares favorably also with coupled cluster approximations. The unrestricted Hartree-Fock solution (which presents spin density waves) is briefly reviewed, and a comparison is made with the DMRG energy values. Finally, the spin-spin and density-density correlation functions are computed; the results suggest that the antiferromagnetic order of the exact solution does not extend up to large distances but exists locally. No charge density waves are present. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...