Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Electronic Resource  (3)
  • 1995-1999  (3)
Material
  • Electronic Resource  (3)
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Archives of environmental contamination and toxicology 33 (1997), S. 252-260 
    ISSN: 1432-0703
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Medicine
    Notes: Abstract. This investigative study assesses the ease and usefulness of the nematode Caenorhabditis elegans for identifying contributors to effluent toxicity within an industrial and municipal wastewater treatment plant (WWTP) system. Several different types of industries, including fiberglass manufacturing, paper packaging, and yarn dyeing, discharge effluent into the municipal wastewater treatment plant, which in turn discharges into a local creek. A major objective of this study was to identify primary sources of toxicity throughout the system with a nematode toxicity test. Twenty-four-hour composite water samples were taken periodically over a ten-month period at five strategic points within the system: (1) at the point of discharge at each of the three industries, (2) at the combined industrial influent of the wastewater treatment plant, (3) at the effluent of the WWTP, (4) upstream of the WWTP discharge, and (5) downstream of the WWTP discharge. Samples were analyzed for basic water chemistry, and each sample was tested for whole effluent toxicity using a 72-h nematode test with mortality as the end point. Results suggest that interactions between the wastewaters of certain industries may increase the overall nematode toxicity in the wastewater treatment facility's composite influent and effluent. Nematode mortality trends indicate relatively high toxicity levels in wastewater entering the WWTP from contributing industries. High WWTP influent toxicity may potentially be due to varying flow rate ratios of industrial discharges, release of varying toxic constituents in wastewaters, and toxic interactions between chemical constituents of industrial wastewaters. The evaluation of toxicity within the treatment system may pinpoint locations where pollution prevention strategies may be implemented to reduce overall toxicity at the point of discharge.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Archives of environmental contamination and toxicology 32 (1997), S. 110 -114 
    ISSN: 1432-0703
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Medicine
    Notes: Abstract. The toxicity of many chemicals depends on the physical conditions of the test environment, and any change or adjustment made to the tests can alter the results. Therefore it is important to establish the sensitivity of the test organism over a range of test conditions to determine when it is necessary to make adjustment and to what extent. In this study, we established the tolerance range of the nematode Caenorhabditis elegans for pH, salinity and hardness using 24- (without food source) and 96-h (with food source) aquatic toxicity tests. The tests were performed in two media: K-medium and moderately hard reconstituted water (MHRW). C. elegans has high tolerance under these test conditions. In K-medium worms survived a pH range of 3.1 to 11.9 for 24 h and 3.2 to 11.8 for 96 h without significant (p 〉 0.05) lethality. In MHRW the pH range was 3.4 to 11.9 for 24 h and 3.4 to 11.7 for 96 h. Salinity tolerance tests were approximated with NaCl and KCl individually. Up to 15.46 g/L NaCl and 11.51 g/L KCl were tolerated by C. elegans in K-medium without significant lethality (p 〉 0.05). In MHRW higher salt concentrations were tolerated; about 20.5 g/L NaCl and 18.85 g/L KCl did not show any adverse effect compared to control. Hardness tolerance was tested by adding NaHCO3. The nematode could tolerate 0.236 to 0.246 g/L of NaHCO3. The high tolerance of C. elegans to these test conditions (pH, salinity, and hardness) allows more versatility than other organisms commonly used in aquatic toxicity tests. It also allows the monitoring of effluents and receiving waters from freshwater or estuarine sources without dilution or adjustment.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Archives of environmental contamination and toxicology 34 (1998), S. 259-264 
    ISSN: 1432-0703
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Medicine
    Notes: Abstract. The nematode Caenorhabditis elegans was used in 72-h toxicity tests to evaluate the influence of ozonation on the toxicity of three synthetic azo dye wastewaters (two reactive dyes and one acid-based dye). The two reactive dye wastewaters contained high concentrations of NaCl (89–112 g/L) in addition to potentially toxic dye components. To determine the contribution of NaCl to toxicity, simulated dye wastewater samples with and without NaCl were tested. Samples were collected at various times during ozonation (t = 0, 8, 32, 64 min); nematodes were exposed to the samples for 72 h. The influence of ozonation on toxicity varied between dye wastewater types. For the acid-based dye wastewater, toxicity increased as duration of ozonation increased. For the reactive dyes without NaCl, toxicity did not appear to be influenced by ozonation. For the reactive dyes with NaCl, mortality was 100% with or without ozonation. Range-finding experiments with NaCl in water and NaCl in dye wastewaters suggested an additive toxic interaction between NaCl and the dyes in wastewater to the nematodes. The duration of ozonation for acid-based dyes and the relatively high NaCl concentrations for the reactive dyes appear to influence effluent toxicity in the ozonated dye wastewaters.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...