Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Electronic Resource  (5)
  • 1990-1994  (3)
  • 1985-1989  (2)
Material
  • Electronic Resource  (5)
Years
Year
Keywords
  • 1
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The effects of ultraviolet-B (UV-B between 290 and 320 nm) on photosynthesis and growth characteristics were investigated in field grown cassava (Manihot esculentum Crantz). Plants were grown at ambient and ambient plus a 5.5kJ m−2 d−1 supplementation of UV-B radiation for 95 d. The supplemental UV-B fluence used in this experiment simulated a 15% depletion in stratospheric ozone at the equator (0°N). Carbon dioxide exchange, oxygen evolution, and the ratio of variable to maximum fluorescence (Fv/Fm) were determined for fully expanded leaves after 64–76 d of UV-B exposure. AH plants were harvested after 95 d of UV-B exposure, assayed for chlorophyll and UV-B absorbing compounds, and separated into leaves, petioles, stems and roots. Exposure to UV-B radiation had no effect on in situ rates of photosynthesis or dark respiration. No difference in the concentration of UV-B absorbing compounds was observed between treatments. A 2-d daytime diurnal comparison of Fv to Fm ratios indicated a significant decline in Fv/Fm ratios and a subsequent increase in photoinhibition under enhanced UV-B radiation if temperature or PPF exceeded 35°C or 1800μmol m−2 s−1, respectively. However, UV-B effects on fluorescence kinetics appeared to be temporal since maximal photosynthetic rates as determined by oxygen evolution at saturated CO2 and PPF remained unchanged. Although total biomass was unaltered with UV-B exposure, alterations in the growth characteristics of cassava grown with supplemental UV-B radiation are consistent with auxin destruction and reduced apical dominance. Changes in growth included an alteration of biomass partitioning with a significant increase in shoot/root ratio noted for plants receiving supplemental UV-B radiation. The increase in shoot/root ratio was due primarily to a significant decrease in root weight (–32%) with UV-B exposure. Because root production determines the harvest-able portion of cassava, UV-B radiation may still influence the yield of an important tropical agronomic species, even though photosynthesis and total dry biomass may not be directly affected.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 14 (1991), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Abstract. Very little attention has been directed at the responses of tropical plants to increases in global atmospheric CO2 concentrations and the potential climatic changes. The available data, from greenhouse and laboratory studies, indicate that the photosynthesis, growth and water use efficiency of tropical plants can increase at higher CO2 concentrations. However, under field conditions abiotic (light, water or nutrients) or biotic (competition or herbivory) factors might limit these responses. In general, elevated atmospheric CO2 concentrations seem to increase plant tolerance to stress, including low water availability, high or low temperature, and photoinhibition. Thus, some species may be able to extend their ranges into physically less favourable sites, and biological interactions may become relatively more important in determining the distribution and abundance of species. Tropical plants may be more narrowly adapted to prevailing temperature regimes than are temperate plants, so expected changes in temperature might be relatively more important in the tropics. Reduced transpiration due to decreased stomatal conductance could modify the effects of water stress as a cue for vegetative or reproductive phenology of plants of seasonal tropical areas. The available information suggests that changes in atmospheric CO2 concentrations could affect processes as varied as plant/herbivore interactions, decomposition and nutrient cycling, local and geographic distributions of species and community types, and ecosystem productivity. However, data on tropical plants are few, and there seem to be no published tropical studies carried out in the field. Immediate steps should be undertaken to reduce our ignorance of this critical area.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-1939
    Keywords: A/Ci ; C3 ; CAM ; Pi regeneration ; RuBP carboxylase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Seedlings of nine tropical species varying in growth and carbon metabolism were exposed to twice the current atmospheric level of CO2 for a 3 month period on Barro Colorado Island, Panama. A doubling of the CO2 concentration resulted in increases in photosynthesis and greater water use efficiency (WUE) for all species possessing C3 metabolism, when compared to the ambient condition. No desensitization of photosynthesis to increased CO2 was observed during the 3 month period. Significant increases in total plant dry weight were also noted for 4 out of the 5 C3 species tested and in one CAM species, Aechmea magdalenae at high CO2. In contrast, no significant increases in either photosynthesis or total plant dry weight were noted for the C4 grass, Paspallum conjugatum. Increases in the apparent quantum efficiency (AQE) for all C3 species suggest that elevated CO2 may increase photosynthetic rate relative to ambient CO2 over a wide range of light conditions. The response of CO2 assimilation to internal Ci suggested a reduction in either the RuBP and/or Pi regeneration limitation with long term exposure to elevated CO2. This experiment suggests that: (1) a global rise in CO2 may have significant effects on photosynthesis and productivity in a wide variety of tropical species, and (2) increases in productivity and photosynthesis may be related to physiological adaptation(s) to increased CO2.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-1319
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary In a previous study conducted at the University of California at Riverside, it was shown that water use of cowpea could be reduced while maintaining seed yields by withholding irrigation during the vegetative stage in a rain-free environment, and then irrigating when estimates based on potential evapotranspiration, indicated 40% depletion of available moisture in 90-cm depth of soil. The general applicability of this efficient irrigation management method was tested by experiments conducted at the West Side Field Station in the San Joaquin Valley of California with six irrigation treatments, three different row spacings (single rows on 76- and 102-cm beds, and double rows on a 102-cm bed), a semi-erect cultivar of cowpea (Vigna unguiculata [L.] Walp.), and a prostrate cultivar of lima bean (Phaseolus lunatus L.). Withholding irrigation during the vegetative stage following pre-irrigation substantially reduced dry matter at anthesis (−17% to −38%) and water use (−101 mm) of cowpea, but did not influence seed yield or shoot dry matter at harvest for either cowpea or lima bean. Increasing the irrigation interval until 75% nominal depletion of available water in 90-cm depth of soil reduced water use (−139 cm), but did not affect seed yield of cowpea. Lima bean, however, showed a significant decrease in shoot dry matter production (−17%) and in seed production (−18%) at the longest irrigation interval involving 75% nominal depletion. The different row spacings used in this experiment did not affect shoot dry matter or seed production of the semi-erect cowpea. However, shoot dry matter and seed yield were significantly greater for the prostrate lima bean grown with double rows on a 102-cm bed. Seed yield was 46% and 18% greater than with single rows on 76-cm and 102-cm beds, respectively. Generally, variations in seed yields of lima bean were positively correlated with variations in shoot dry matter production. Nominal depletion of available soil water provided a practical method for scheduling irrigations, but the results with cowpea indicated that the critical level, which resulted in the greatest reductions in water use while maintaining maximum seed yield varied from 40% (at Riverside) to 75% (at West Side Field Station). Additional methods are needed to fine-tune irrigation which is based mainly on nominal depletion of available water. Generally, pressure chamber estimates of leaf water potential exhibited too little variation among plants subjected to different irrigation treatments for it to be useful for fine-tuning irrigation schedules for either cowpea or lima bean. However, differences in temperature between canopy and air, when expressed as a function of either vapor pressure deficit or canopy temperature, and related to percent reduction in yield, appeared to have sufficient resolution to provide a practical method for fine-tuning irrigation schedules for cowpea during flowering and pod-filling, but not lima bean. Normalizing temperature differences with vapor pressure deficit was more effective, but normalizing with canopy temperatures is more convenient because it does not require a measurement of air humidity.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-1319
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Sugarbeets (Beta vulgaris L.) on a Panoche clay loam soil were subjected to 3 different irrigation frequencies and 3 irrigation cutoff dates prior to harvest to determine the effects on evapotranspiration, growth, and sucrose yield. Lengthening the irrigation interval from 1 to 3 weeks reduced evapotranspiration without a significant decline in sucrose production. Increased irrigation cutoff from 3 to 7 weeks prior to harvest significantly increased sucrose percentage within the root and resulted in similar total sucrose yields. Lengthening the irrigation interval only slightly reduced both fresh vegetative biomass and leaf area index (significant differences occurred only at one plant sampling date). The combination of less frequent irrigation and an early cutoff date increased the amount of soil water extracted by sugarbeets. The water use of sugarbeets can be reduced without a significant decline in sucrose production through optimizing irrigation frequency to about 14 to 20 days on this soil and cutting off irrigations about 40 to 45 days before harvest, provided irrigations replenish soil water depletions.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...