Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Digitale Medien  (6)
  • 1990-1994  (4)
  • 1975-1979  (2)
Materialart
  • Digitale Medien  (6)
Erscheinungszeitraum
Jahr
  • 1
    Digitale Medien
    Digitale Medien
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 17 (1994), S. 0 
    ISSN: 1365-3040
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Biologie
    Notizen: The relation between growth rate traits (height, basal diameter, stem volume and branch diameter) and two measures of respiration rate [metabolic heat rate (q) and CO2 production rate (Rco2)] and their ratio (q/Rco2) was examined on a collection of 192 different genotypes of coast redwoods [Sequoia sempervirens (D.Don) Endl.]. Branch diameter was not correlated with any of the respiratory measures, but the other three growth traits gave highly significant (P 〈 0.001) correlations with positive slopes. Combining the four growth traits and the three respiratory variables (q, RCo2 and q/Rco2) to give two canonical variates, one representing growth and one representing respiration, gives an even stronger linear correlation (r= 0–85). These data suggest that simultaneous assay of multiple respiratory measures on juvenile trees can be used to predict their longer-term growth rates.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 17 (1994), S. 0 
    ISSN: 1365-3040
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Biologie
    Notizen: The spatial distribution of a plant species is limited by the range of climatic conditions to which the species can adapt. Temperature is one of the most significant determinants of plant distribution, but except for the effects of lethal limits, little is known about physiological changes in responses to differences in environmental temperature. In this study, temperature coefficients of non-photosynthetic metabolism have been determined in the normal environmental temperature range for selected annual and perennial plants. Distinct differences were found in the temperature coefficient of metabolism of woody perennial plants from high latitudes and high elevations and closely related low-latitude and low-elevation plants. Low-latitude and low-elevation woody perennials have Arrhenius temperature coefficients for metabolism that are larger than those for congeneric high-latitude and high-elevation plants. The Arrhenius temperature coefficient is not rapidly adapted to new environments. A simple function was developed relating Arrhenius temperature coefficient to latitude and elevation for accessions of three, woody, perennial species complexes of plants collected from a wide geographic range but grown in common gardens. Within these taxa, plants that experience broader ranges of temperature during growth in their native habitat have smaller temperature coefficients. Temperature coefficients also varied with growth stage or season. No similar relationship was found for annuals and herbaceous perennials. For the plants tested, Arrhenius temperature coefficients are high during early spring growth, but shift to lower values later in the season. The shift in Arrhenius temperature coefficients occurs early in the season for southern and low-elevation plants and progressively later for plants from further north or higher elevation. The changes in Arrhenius temperature coefficients result largely from increases in plant metabolic rates at lower temperatures while little change occurs in the rates at higher temperatures. Altering the temperature dependence of the control of metabolic rate is apparently an important means of response to climate change.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Digitale Medien
    Digitale Medien
    Springer
    Planta 195 (1994), S. 1-9 
    ISSN: 1432-2048
    Schlagwort(e): Calorimetry ; Chilling ; Heat-stress injury ; Lycopersicon
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie
    Notizen: Abstract The temperature dependence of the metabolic rates of cultured tomato cells (Lycopersicon esculentum Mill.) has been studied by differential scanning calorimetry as a continuous function over the range from near 0 to above 45°C. Metabolic rates increase exponentially with temperature over the permissive range for growth (approx. 10–30°C). Outside this range irreversible loss of metabolic activity occurs. The rate of activity loss is time and temperature dependent, increasing as the exposure temperature diverges from the permissive range and increasing with time at any nonpermissive temperature. Metabolic heat rates obtained while scanning down from intermediate (25°C) to low temperature (0°C) yielded Arrhenius plots with pronounced downward curvature below about 12°C. The increase in apparent activation energy below 12°C is a function of the scan rate, showing its time dependency. This time dependency caused by inactivation confounds many estimates of apparent activation energy. Scanning up to high temperature shows that activity loss at high temperature is also time and temperature dependent. No first-order phase transitions associated with the changes in metabolism were detected at either low or high temperatures. Studies with lamellar lipid preparations added to cells show that temperature-induced transitions of lipids at levels equivalent to 4% of the lipid content of the cells were detectable. Cells with altered lipid composition showed altered temperature dependence of inactivation. High pressures (in the range from 10 to 14 MPa) shift the high temperature threshold and the rate of metabolic activity loss, supporting a postulate that higher-order transitions may be associated with inactivation of metabolism. Higher-order transitions of lipids or first-order transitions encompassing only a small fraction of total lipid remain among several viable postulates to explain temperature-dependent loss in activity. Alternative postulates are discussed.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    ISSN: 1432-2048
    Schlagwort(e): Calorimetry ; Cell culture (temperature responses) ; Lysopersicon (temperature responses) ; Temperature response and stress
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie
    Notizen: Abstract Precise time and temperature dependences of the decrease of metabolism of cultured cells of tomato (Lysopersicon esculentum (L.) Mill. L. peruvianum (L.) Mill.) resulting from exposures to high and low temperatures were determined. Equations of the form Ln (activity)= C +1 [A+(T-Tm)N+B] describe thermal inactivation and allow prediction of activity loss following any thermal excursion beyond limits of temperature stability. The experimental parameters A, B, C and N derived from these equations allow precise comparison of temperature sensitivities of cells. Analysis of metabolic heat rates, O2-consumption rates and CO2-evolution rates demonstrated simultaneous shifts in metabolic pathways and metabolic activities towards more anaerobic metabolism below about 12° C and at high temperatures that stress growth of tomato cells.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    ISSN: 1617-4623
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie
    Notizen: Summary The treatment of yeast cells with high levels of ethidium bromide causes a rapid induction of respiratory deficient mutants followed by a period of recovery to respiratory competence in 60 to 70% of the cells. Prolonged exposure then results in a final irreversible phase of petite formation. Sucrose gradient sedimentation analysis of 3H-adenine labelled mtDNA indicates that limited fragmentation (to about 16-18S) occurs during the initial phase of petite induction followed by a reassembly of the fragments during the period corresponding to the recovery of respiratory competence. The reassembly is associated with an ethidium bromide insensitive incorporation of 3H-adenine into mtDNA at a level consistent with repair synthesis. Genetic analyses, based on the transmission of five markers carried on the mtDNA of “repaired ρ+” clones, suggests that reassembly occurs with a high degree of fidelity, though in two of a total of twenty five clones differences in marker transmission frequency were observed which could possibly reflect an altered gene order. In addition, a description is given of the marked changes in the suppressive nature of the treated cells and the temporary reduction in the capacity for marker transmission seen to accompany the transitory fragmentation of the mtDNA. The final phase of petite induction is an energy dependent degradation of the mtDNA to produce a ρ0 culture.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    ISSN: 1617-4623
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie
    Notizen: Summary When growing cultures of S. cerevisiae are treated with high concentrations of ethidium bromide (〉50 μg/ml), three phases of petite induction may be observed: I. the majority of cells are rapidly converted to petite, II. subsequently a large proportion of cells recover the ability to form respiratory competent clones, and III. slow, irreversible conversion of all cells to petite. The extent of recovery of respiratory competence observed is dependent on the strain of S. cerevisiae employed and the temperature and the carbon source used in the growth medium. The effects of 100 μg/ml ethidium bromide are also produced by 10 μg/ml ethidium bromide in the presence of the detergent, sodium dodecyl sulphate, and recovery is also observed when cells are treated with 10 μg/ml ethidium bromide under starvation conditions. Genetic analysis of strain differences indicates that a number of nuclear genes influence petite induction by ethidium bromide. In one strain, S288C, petite induction by 100 μg/ml ethidium bromide is extremely slow under certain conditions. Mitochondria isolated from S288C lack the ethidium bromide stimulated nuclease activity found in D243-4A, a strain which shows triphasic kinetics of petite formation. This enzyme may, therefore, be responsible for the initial phase of rapid petite formation.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...