Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-5168
    Keywords: fish ; sea raven ; gluconeogensis ; hepatocytes ; redox ; LDH ; isozymes ; kinetics
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Previous studies have reported very low rates of gluconeogenesis from lactate in sea raven (Hemitripterus americanus) hepatocytes compared to other teleosts studied. This study examines whether hepatic cell redox or lactate dehydrogenase (LDH) characteristics may explain this observation. Sea raven hepatic optimal LDH activities (pyruvate reductase direction) were more than 40 times less compared with rainbow trout liver values (40 vs 1914 μmol·min−1·g−1 protein). The Km(lactate) was 9.24 and 0.86 mM for sea raven and trout hepatic LDH, but the Km(pyruvate) was similar between the two species (0.11 and 0.21 mM, respectively). These results suggested that sea raven liver LDH did not favour lactate use and was more indicative of the mammalian M-isozyme. Gel electrophoresis showed a predominant intermediate isozyme, with a small amount of the M-type LDH. Phosphoenolpyruvate carboxykinase (PEPCK) was localized to the mitochondrial compartment, while there was no apparent mitochondrial glutamate-oxaloacetate transaminase (GOT) activity. No in vitro lactate flux to glucose was found in untreated, 10 mM ethanol-treated, or 3 mM NH4Cl-treated sea raven hepatocytes, although CO2 production from lactate was decreased by ethanol and increased by NH4Cl. These results provide evidence that cell redox does not limit gluconeogenesis from lactate, while low activities and the kinetic characteristics of LDH may partially explain the low lactate gluconeogenesis reported in sea raven hepatocytes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...