Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Electronic Resource  (2)
  • 1990-1994  (2)
  • Cellulosesynthesizing terminal complexes  (1)
  • Chlorophyta  (1)
  • 1
    ISSN: 1615-6102
    Keywords: Erythrocladia subintegra ; Cellulose microfibrils ; Cellulosesynthesizing terminal complexes ; Terminal complex subunits
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The marine red algaErythrocladia subintegra synthesizes cellulose microfibrils as determined by CBH I-gold labelling, X-ray and electron diffraction analyses. The cellulose microfibrils are quite thin, ribbon-like structures, 1–1.5 nm in thickness (constant), and 10–33 nm in width (variable). Several laterally associated minicrystal components contribute to the variation in microfibrillar width. Electron diffraction analysis suggested a uniplanar orientation of the microfibrils with their (101) lattice planes parallel to the plasma membrane surface of the cell. The linear particle arrays bound in the plasma membrane and associated with microfibril impressions recently demonstrated inErythrocladia have been shown in this study to be the cellulose-synthesizing terminal complexes (TCs). The TCs appear to be organized by a repetition of transverse rows consisting of four TC subunits, rather than by four rows of longitudinallyarranged TC subunits. The number of transverse rows varied between 8–26, corresponding with variation in the length of the TCs and the width of the microfibrils. The spacings between the neighboring transverse rows are almost constant being 10.5–11.5 nm. Based on the knowledge thatAcetobacter, Vaucheria, andErythrocladia synthesize similar thin, ribbon-like cellulose microfibrils, the structural characteristics common to the organization of distinctive TCs occurring in these three organisms has been discussed, so that the mode of cellulose microfibril assembly patterns may be deciphered.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Protoplasma 168 (1992), S. 51-63 
    ISSN: 1615-6102
    Keywords: Cellulose microfibril formation ; Chlorophyta ; Coleochaete scutata ; Freeze fracture ; Plasma membrane ; Terminal complex
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Cells of the charophycean alga,Coleochaete scutata active in cell wall formation were freeze fractured in the search for cellulose synthesizing complexes (TCs) since this alga is considered to be among the most advanced and a progenitor to land plant evolution. We have found a new TC which consists of two geometrically distinctive particle complexes complementary to one another in the plasma membrane and occasionally associated with microfibril impressions. In the E-fracture face is found a cluster of 8–50 closely packed particles, each with a diameter of 5–17 nm. Most of these particles are confined within an 80 nm circle. In the P-fracture face is found an 8-fold symmetrical arrangement of 10 nm particles circumferentially arranged around a 28 nm central particle. The TCs ofC. scutata are quite distinctive from the rosette/globule TCs of land plants. The 5.5×3.1 nm microfibril inC. scutata is also distinctive from the 3.5×3.5 nm microfibril typical of land plants. The phylogenetic implications of this unique TC in land plant evolution are discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...