Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 34 (1988), S. 293-304 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Experimental and theoretical studies on a backflush hollow-fiber enzymatic reactor (HFER) were conducted in this work for a lactose/lactase system. An A. niger lactase was chosen, from the four lactases tested, for reversible immobilization in the sponge layers of the fibers. An enzyme loading procedure was developed that allowed reliable and reproducible operation of the hollow-fiber reactor and produced industrially significant conversions without apparent change in the activity or stability of the lactase used. This reversible immobilization scheme also permitted easy replacement of the enzyme used. The performance of the backflush HFER was investigated and a large number of data concerning its operation were obtained and interpreted. Momentum and mass transports in such a HFER were analyzed, and mathematical models that took the experimental findings into consideration were also developed and solved analytically and/or numerically. Predictions from the computer model developed in this work were found to be in excellent agreement with the experimental data collected, suggesting the possibility of a priori design of a process-scale backflush HFER. With minor modifications, the models developed are expected to be applicable to hollow-fiber reactors with a wide selection of immobilized cells, organelles, and other enzymes.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1052-9306
    Keywords: Chemistry ; Analytical Chemistry and Spectroscopy
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Fast atom bombardment (FAB) and collisional activation dissociation (CAD) mass-analysed ion kinetic energy (MIKE) spectra have confirmed the structures of retinyl phosphate (Ret-P), retinyl phosphate mannose (Ret-P-Man) and guanosine 5′-diphospho-D-mannose (GDP-Man). Ret-P-Man was made in vitro while Ret-P and GDP-Man were chemically synthesized. Positive ion FAB mass spectrometry of Ret-P showed an observable short-lived spectrum with a mass ion at m/z 367 [M + H]+, and a major fragment ion at m/z 269 [M+H—H3PO4]+. Negative ion FAB mass spectrometry of Ret-P showed a strong stable spectrum with a parent ion at m/z 365 [M—H]-, a glycerol (G) adduct ion at m/z 457 [M—H+G]- and a dimer ion at m/z 731 [2M—H]-. GDP-Man showed an intense spectrum with parent ion at m/z 604 [M—H]- and cationized species at m/z 626 [M+Na-2H]- and 648 [M+2Na-3H]-. Negative ion FAB mass spectrometry of Ret-P-Man showed a parent ion at m/z 527 [M—H]- and a fragment ion at m/z 259 [C6H12PO9]-. The CAD-MIKE spectra showed structurally significant fragment ions at m/z 442 and 361 for the [M—H]- ion of GDP-Man, and at m/z 509, 406, 364 and 241 for the [M—H]- ion of Ret-P-Man. FAB and CAD-MIKE spectra have been applied successfully to confirm the structure of Ret-P-Man made in vitro from Ret-P and GDP-Man.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...