Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Electronic Resource  (3)
  • yeast  (2)
  • 2 μ DNA-Saccharomyces  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Biochemical genetics 15 (1977), S. 775-783 
    ISSN: 1573-4927
    Keywords: yeast ; 5-fluorouracil ; mitochondria ; petite mutants
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract Induction of the cytoplasmic petite mutation in yeast by 5-fluorouracil (5FU) and 5-fluorocytosine (5FC) is known to depend on the incorporation of 5FU into some species of RNA; 5FC is active only following deamination to 5FU. Several mutants have now been isolated which are resistant to petite mutagenesis by 5FU but remain sensitive to growth inhibition by this analogue. They fall into two classes: those in class I are also resistant to mutagenesis by 5FC, while class II mutants retain partial sensitivity to the latter agent. The growth of both classes is sensitive to 5FC. The behavior of class II mutants requires that exogenous 5FU is specifically excluded from the site of synthesis of the target RNA involved in petite mutagenesis, while 5FC has access to it. The most likely explanation is that the RNA concerned is synthesized in the mitochondria, and that the mitochondrial membranes of class II mutants are impermeable to 5FU but not 5FC. This is supported by the finding that the membrane-active agent dimethylsulfoxide restored 5FU sensitivity to this class of mutants. No such effect was observed with class I mutants, and these are thought to have altered mitochondrial RNA-synthesizing systems which are unable to recognize fluorinated nucleotides.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 205 (1986), S. 417-421 
    ISSN: 1617-4623
    Keywords: Plasmid stability ; 2 μ DNA-Saccharomyces ; Chemostat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The designation of the yeast 2 μ circle as a “selfish” DNA molecule has been confirmed by demonstrating that the plasmid is lost with exponential kinetics from haploid yeast populations grown in continuous culture. We show that plasmid-free yeast cells have a growth rate advantage of some 1.5%–3% over their plasmid-containing counterparts. This finding makes the ubiquity of this selfish DNA in yeast strains puzzling. Two other factors probably account for its survival. First, the rate of plasmid loss was reduced by allowing haploid populations to enter stationary phase periodically. Second, it was not possible to isolate a plasmid-free segregant from a diploid yeast strain. Competition experiments demonstrated that stability in a diploid is conferred at the level of segregation and that plasmid-free diploid cells are at a selective advantage compared with their plasmid-containing counterparts. Yeast cells in nature are usually homothallic and must frequently pass through both diploid and stationary phases. The 2 μ plasmid appears to have evolved a survival strategy which exploits these two features of its host's life cycle.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 0749-503X
    Keywords: 2 μm plasmid ; yeast ; maternal bias ; DNA amplification ; plasmid stability ; Life and Medical Sciences ; Genetics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: A distributive model has been constructed to describe the maintenance of the native 2 μm and 2 μm-based plasmids in the yeast Saccharomyces cerevisiae. This model includes elements which represent the influence of selection, segregation, replication and amplification on plasmid stability. A computer program has been written in TURBO PASCAL to implement the model and a number of simulation experiments have been carried out. These simulations permitted the choice of a form of the model which is compatible with the available experimental evidence. The form chosen involves an amplification system in which the RAF gene product binds to the Rep1/Rep2 dimer to prevent the latter acting to repress the activity of the FLP gene. At the same time an upper limit (or ‘ceiling’) was imposed on the number of plasmid molecules able to replicate. Maternal bias was accommodated by ‘tagging’ a small proportion of molecules for inheritance by the mother nucleus and these tags being removed (or ‘cleared’) by the Rep1/Rep2 dimers. This final form of the model makes specific predictions about the stability of 2 μm and YEp plasmids in yeast populations and about the distribution of plasmid copy number between cells in such populations. The predictions on stability have been subjected to experimental test and results provide good support for the model.
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...