Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Electronic Resource  (6)
  • 2-Oxoglutarate  (2)
  • Isotonic Reabsorption  (2)
  • Kidney Micropuncture  (2)
  • 1
    ISSN: 1432-2013
    Keywords: Oxalate ; Succinate ; Glutarate ; 2-Oxoglutarate ; Citrate ; Sulfate
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract In order to study the specificity for contraluminal para-aminohippurate (PAH) transport, the inhibitory potency of aliphatic dicarboxylates on3H-PAH influx, as well as the inhibitory effect on35SO 4 2− - and3H-succinate influx, from the interstitium into cortical tubular cells in situ has been determined. The following was found: 1. Testing a homologous series of dicarboxylates-ranging from the 2 C oxalate to the 10 C sebacate — PAH transport was inhibited by succinate (app.K i 1.35 mmol/l), and all longer dicarboxylates, with high potency (app.K i 0.05–0.35 mmol/l). Sulfate transport was inhibited only by oxalate (app.K i 1.1 mmol/l), while dicarboxylate transport was inhibited by succinate, glutarate, adipate and pimelate with decreasing potency (app.K i 0.04, 0.24, 0.91, 4.0 mmol/l, respectively). 2. PAH transport was inhibited by succinate and glutarate with high potency (app.K i 1.35 and 0.05 mmol/l), by the correspondent monomethylester to a lesser extent (app.K i 1.7 and 0.74 mmol/l), but not by the dimethylester. On the other hand, the semialdehyde of succinate with aK i-value of 1.2 mmol/l, had the same inhibitory potency as succinate itself, while the dialdehyde of glutarate (app.K i 1.4 mmol/l) was much less potent as glutarate. 3. Introduction of an oxo-, methyl- or sulfhydroxylgroup onto the 2-position of succinate, or of an oxo-group onto the 2-position of glutarate moderately augmented the inhibitory potency against PAH-uptake. However, introduction of a 2-hydroxy group onto succinate or glutarate in thel-position reduced the inhibitory potency more than in thed-position. Introduction of two methyl-, sulfhydryl- or hydroxyl-groups in the 2–3-position of succinate reduced or abolished its inhibitory potency. The introduction of a 2-amino group onto succinate or glutarate abolished its effect on PAH transport. However, N-acetylation or N-benzoylation led to a restitution in inhibitory potency. 4. The trans-isomers fumarate and mesaconate inhibited PAH- and methylsuccinate transport, while the cis-isomers maleate and citraconate did so to a lesser extent or not at all. The effect was reversed with the tricarboxylic aconitates, because cis-aconitate bears a CH2-extended COOH-group in trans-position and trans-aconitate in cis-position. The data indicate that there exist three different anion transport systems at the contraluminal cell side of the proximal renal tubule: 1. a sulfate-oxalate transporter, 2. a sodium-dependent dicarboxylate transporter, and 3. a paraaminohippurate transporter. The PAH transport system accepts dicarboxylates with chain length higher than 7.5 Å (=distance between the terminal oxygen atoms), while the dicarboxylate transport interacts with dicarboxylates with a chain length between 6.5 and 10 Å. Both transport systems prefer the transconfiguration. The effect of side groups on the interaction of dicarboxylates with the PAH-transport system is due mainly to hydrophobicity and electron configuration.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2013
    Keywords: Proximal Convolution ; Isotonic Reabsorption ; Bicarbonate Buffer ; Lipid Soluble Buffers ; Sodium Transport
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The fluid reabsorption from the proximal convolution of the rat kidney was measured with the Gertz shrinking droplet technique. Simultaneously, the peritubular capillaries were perfused with artificial solutions. In some experimental series, fluid from the shrinking droplet was withdrawn and analysed for Cl−, Na+, and osmolality so that the transtubular transport of Na+, Cl−, and HCO 3 − could be calculated. Capillary perfusate in some experiments was also withdrawn and its pH was measured. The following results were obtained: 1. With increasing concentration of HCO 3 − in the capillary perfusate, the transtubular water, sodium, chloride, and bicarbonate reabsorption increased. 2. The sulfonamide buffers sulfamerazine and glycodiazine (Redul®), which easily penetrate the tubular wall, could, in equimolar concentrations, substitute totally for the bicarbonate buffer in promoting isotonic fluid absorption. 3. Butyrate, propionate, and acetate were also effective; pyruvate, lactate, and paraaminohippurate, however, were not. 4. The effect of HCO 3 − and glycodiazine on isotonic absorption was shown to depend exclusively on the concentration of the buffer anion and not on the concentration of undissociated acid or pH. From these data it is suggested that for proximal isotonic absorption of water, sodium, and chloride, the reabsorption of buffer anions via H+ secretion and nonionic diffusion may be essential. The H+ secretion or the buffer anion absorption across the luminal cell wall may secondarily influence the active Na+ transporting mechanism located at the basal cell site either by a luminal H+−Na+ exchange mechanism or by a lyotropic effect which would increase the Na+ permeability of the luminal cell site. Thereby more Na+ would be delivered to the Na+ pumping site and the rate of Na+ pumping would be augmented.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-2013
    Keywords: Renal Microperfusion ; Isotonic Reabsorption ; Tracer Permeability ; Glomerulo Tubular Balance ; Renale Mikroperfusion ; Isotone Resorption ; Tracerpermeabilität ; Glomerulotubuläre Balance
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary In the first experimental series proximal convolutions of the rat kidney were perfused with a modified Ringer solution and the isotonic fluid absorption was measured. In a second series the tubule was perfused with equilibrium solution which contained36Cl and the chloride permeability was determined. By the recollection method each individual tubule was perfused twice either at constant luminal diameter but different perfusion rates (10:30 or 6:16 nl/min) or at constant perfusion rates but different luminal diameters (20:30 μ). The perfusate was recollected at two different sites which were at least 500 μ distant from the infusion site. The isotonic fluid absorption as well as the36Cl permeability was unchanged when the tubule was distended from 20–30 μ. Both, however, increased about 20% when the perfusion rate was increased 3-fold. The data led to the following conclusions: 1. It is unlikely that there is a flow reactor type dependence of proximal tubular transport on flow rate. 2. The tubular distension cannot be responsible for the glomerulo-tubular balance. 3. It is more advantageous to relate permeability data of the rat nephron to tubular length. 4. In microperfusion experiments non steady sampling does not affect transepithelial fluxes per unit tubular length, provided that the pump delivery is constant.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-2013
    Keywords: Hexose Transport ; Sodium Cotransport ; Kidney Tubules ; Sugar Specificity ; Kidney Micropuncture
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary With the technique of stop flow microperfusion with simultaneous capillary perfusion, the zero net flux transtubular concentration difference (Δc) of labelled sugars was measured. The following sequence of Δc values, which are a measure for the active transtubular transport rate, were evaluated:d-glucose ≅β methyl-d-glycoside 〉α-methyl-d-glycoside 〉d-galactose 〉3-O-methyl-glucose 〉d-allose. When 10−4 M phlorrhizin was given in the luminal perfusate the Δc's dropped to zero (±8%). Δc-values in the same range i.e. indicating no active transport, were found for:l-glucose,d-mannose, 2-deoxy-d-glucose,d-fructose,d-glucosamine, 6-deoxy-d-galactose (=d-fucose),d-ribose and the reference polyalcohold-mannitol. Inhibition of thed-galactose δc was achieved by 15 mmol/l of the following sugars: α-methyl-d-glycoside ≅d-glucose ≅ 6-deoxy-d-glucose 〉3-O-methyl-d-glucose an no significant inhibition byd-xylose andd-mannose. Against Δc of α-methyl-d-glucose the following inhibitory potency was observed:d-glucose 〉6-deoxy-d-glucose 〉3-O-methyl-d-glucose ≅d-galactose 〉d-xylose and no inhibition byd-mannose. When the ambient sodium was replaced by choline, the Δc values of all actively transported sugars dropped toward zero. An analysis of the Na+ dependence of the α-methyl-d-glycoside transport revealed that the sodium dependence is of the affinity type i.e. that onlyK m increased with increasing Na+ concentration whileV max remained almost constant. From these data one can conclude: 1. The Crane specificity, i.e. that only the α-position of the OH-group on carbon atom 2 is essential, which was found for the intestinal hexose transport holds for the rat proximal kidney tubule, too. 2. The hexose transport system in the rat works only when Na+-ions are present. The sodium ions augment the affinity of the hexose transport system for the hexoses.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Pflügers Archiv 351 (1974), S. 49-60 
    ISSN: 1432-2013
    Keywords: Amino Acid Transport ; Sodium Cotransport ; Kidney Tubules ; Kidney Micropuncture
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary With the technique of stop flow microperfusion with simultaneous capillary microperfusion the zero net flux transtubular concentration differences (Δc) of labelled amino acids which are equivalent to their active transport rates were measured. Alll-amino acids tested (phenylalanine, histidine, aminobicycloheptane-carboxylic acid, aminoisobutyric acid; lysine, ornithine, arginine; aspartic acid; proline and glycine) showed a considerable Δc, i.e. active transport rate. When, however, the ambient sodium was replaced by choline the Δc values dropped to zero. An analysis of the Na+ dependence of the ornithine transport revealed that the sodium-dependence is of the mixed type, i.e. thatK m decreased andV max increased with increasing Na+ concentration to the same extent. In contrast to other biological systems no mutual interaction between the Na+-dependentd-glucose andl-histidine transport could be observed. Incidental to these studies it was observed that the active transport rate ofd-histidine was in the range of 40% of that of thel-isomer while ford-phenylalanine it was only in the range of 10% of the active transport of thel-isomer. Furthermore it was found that thel-aspartic acid transport was already saturated at a luminall-aspartic acid concentration of 0.05 mmol/l while that ofl-phenylalanine was not saturated even at a luminal concentration of 9 mmol/l.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-2013
    Keywords: 2-Oxoglutarate ; Lactate ; Pyruvate ; Nitrate
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract In order to study the characteristics of contraluminal para-aminohippurate transport into proximal tubular cells the stopped flow capillary perfusion method was applied. The disappearance of3H-paraaminohippurate from the capillary perfusate at different concentrations and contact times was measured and saturation type behaviour was found with aK m of 0.08±0.01 (SE) mmol/l,J max of 1.1±0.1 pmol·s−1·cm−1 andr, the final extracellular/intracellular distribution ratio of 0.93±0.03. Omission of Na+ from the capillary test perfusate caused a small reduction of contraluminal PAH uptake at small transport rates (0.1 mmol/l PAH in the test perfusate) but not at high transport rates (1.0 mmol/l PAH in the test perfusate). Change of K+ between 0 and 40 mmol/l and pH between 6.0 and 8.0 did not influence contraluminal PAH uptake. Isotonic replacement of chloride by gluconate, nitrate, sulfate, phosphate, methanesulfonate or increase in bicarbonate to 50 mmol/l did not influence PAH uptake at small transport rates. But isotonic sulfate and phosphate, as well as 50 mmol/l HCO 3 − and 25 mmol/l Hepes in isotonic solutions reduced PAH uptake at high transport rates. Addition of 5 mmol/l Ca2+, Mg2+, Mn2+, Ba2+, Cd2+ to isotonic Na+-gluconate solution did not influence PAH uptake except for Mg2+ and Mn2+ which inhibited uptake at small transport rates only. Preperfusion of the peritubular capillaries with rat serum, Na+ gluconate (Ca2+-+Mg2+-free), Na+ gluconate (Ca2+-+Mg2+-free) plus 10 mmol/l lactate or pyruvate or 0.1 mmol/l 2-oxoglutarate did not influence PAH uptake at small PAH transport rates, but inhibited at high transport rates. Preperfusion of the capillaries for 10 s with Na+-, Ca2+- and Mg2+-free solutions reduced PAH uptake in the presence of Na+ at both transport rates. A second 10 s preperfusion — after the first 10 s Na+-, Ca2+-, Mg2+-free preperfusion — with serum or solutions which contained Na+ and Ca2+ or Mg2+ restored the PAH fluxes to control values. The data are compatible with the hypothesis that contraluminal PAH uptake occurs by a saturable transport mechanism in exchange for other intracellular anions rather than in cotransport with Na+ ions. It was, however, not possible to identify the type of counteranions involved. The large effect of cation replacement on para-aminohippurate transport, which was reported in many previous studies with kidney slices, is not a direct effect on the para-aminohippurate transporter, but is rather caused indirectly via cell metabolism and/or changed ion gradients.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...