Library

Your search history is empty.
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Electronic Resource  (1)
  • Acetylcholinesterase  (1)
  • 1
    ISSN: 1432-0738
    Keywords: Oximes ; HLö 7 [CAS reg. No. 120 103-35-7] ; HI 6 [CAS reg. No. 34433-31-31] ; Obidoxime [CAS reg. No. 114-90-9] ; Syntheses ; Organophosphates ; Therapy ; Reactivation ; Acetylcholinesterase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract HLö 7 dimethanesulfonate (1-[[[4-(aminocarbonyl)pyridinio] methoxy] methyl] -2,4-bis [(hydroxyimino) methyl]pyridinium dimethanesulfonate) is a broad-spectrum reactivator against highly toxic organophosphorus compounds. The compound was synthesized by a new route with the carcinogenic bis(chloromethyl)ether being substituted by the non-mutagenic bis(methylsulfonoxymethyl)ether. The very soluble dimethanesulfonate of obidoxime was also prepared by this way. HLö 7 dimethanesulfonate is the first water-soluble salt of HLö 7 that should be suitable for the wet/dry autoinjector technology, because aqueous solutions of HLö 7 are not very stable (calculated shelf-life 0.2 years when stored at 8°C, 1 M solution, pH 2.5). The crystalline preparation contains 96% of thesyn/syn-isomer, less than 2% of thesyn/anti-isomer and some minor identified by-products. HLö 7 was very efficient in reactivating acetylcholinesterase (AChE) blocked by organophosphates as long as ageing did not prevent dephosphylation. HLö 7 was superior to HI 6 (1-[[[4-(aminocarbonyl)pyridinio]methoxy]methyl]-2-[(hydroxyimino)methyl]pyridinium dichloride) in reactivating soman and sarin-inhibited AChE from erythrocytes, and literature data indicate that HLö 7 exceeds HI 6 by far in reactivating tabun-inhibited AChE. In atropine-protected, soman-poisoned mice HLö 7 was three times more potent than HI 6 (protective ratio 5 versus 2.5), and in sarin-poisoned mice HLö 7 was 10 times more potent than HI 6 (protective ratio 8 for both oximes). In atropine-protected guinea-pigs HLö 7 was less effective than HI 6 (protective ratio: 2.3 versus 5.2 for soman; 5.2 versus 6.8 for sarin; 4.3 versus 3.8 for tabun). The mean survival time of anaesthetized guinea-pigs exposed to 5 LD50 soman (6.3 min) was increased by atropine (27 min) and atropine + HLö 7 (57 min). HLö 7 alone did not prolong the survival. The most impressive effect of HLö 7 was on respiration: 3 min after i.v. injection of HLö 7 and atropine, the depressed respiration increased rapidly to 60% of control and remained at that level during the observation period (60 min). With atropine alone, respiration recovered only slowly. Behavioural and physiologic parameters were determined in atropine-protected mice exposed to a sublethal soman dose. The running performance was significantly improved by HLö 7. Even central symptoms, e.g. hypothermia and convulsions, were decreased markedly by HLö 7 (evaluation 60 min after poisoning). The pharmacokinetic data for HLö 7 in male beagle dogs are similar to those of HI 6. After i.v. injection: t1/2α = 5 min; t1/2ß = 46 min; VD = 0.24 1/kg; Clp1 = 3.7 ml x min−1 x kg−1; Clren= 3.2 ml x min−1 x kg−1; renal excretion of unchanged HLö 7 = 86%. After i. m. injection: t1/2abs = 14 min; t1/2ß = 48 min; Vd = 0.27 1/kg; Clp1= 3.9 ml x min−1 x kg−1; Clren= 2.7 ml x min−1 x kg−1; renal excretion of unchanged HLö 7 = 76%; bioavailability 〉95%. Plasma protein binding was 〈5%; HLö 7 did not permeate into red cells. A dose of 20 μmol/kg was well tolerated both after i.v. and i.m. administration. In anaesthetized dogs (chloralose) HLö 7 i.v. (20 (imol/kg) showed marginal hypotensive effects, whereas 50 μmol/kg resulted in decreased mean blood pressure (−15%) and blood flow (−30%) without reflex tachycardia. One out of four dogs developed a circulatory shock syndrome with anuria. Respiration varied only transiently. Blood gases and pH were not influenced. Similar cardiovascular effects were observed in anaesthetized (urethane) guinea-pigs. In isolated guinea-pig hearts (Langendorff) sinus and ventricular heart rate were not influenced by HLö 7 〈500 μM. HLö 7 antagonized both carbachol and nicotine effects. Red cell AChE was inhibited by HLö 7 by up to 50%; C50 about 100 μM. Previously, HLö 7 was shown to block ganglionic transmission (IC50= 500 μM), probably due to ion-channel blockade. These data indicate that HLö 7 combines ganglion blocking, anticholinergic and indirect cholinergic properties like other bispyridinium compounds. The results suggest that HLö 7 may be tolerated by man at a dose of 10 μmol/kg. Vital functions are not expected to be impaired. At such a dose (250–500 mg), which can be injected by an autoinjector, HLö 7 is expected to be superior to HI 6.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...