Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Digitale Medien  (3)
  • groundwater  (2)
  • Ammonium  (1)
  • 1
    Digitale Medien
    Digitale Medien
    Springer
    Biology and fertility of soils 26 (1998), S. 169-172 
    ISSN: 1432-0789
    Schlagwort(e): Key words Urea ; Coated fertilizers ; Ammonium ; nitrogen ; Nitrate nitrogen ; Nitrogen uptake
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie , Geologie und Paläontologie , Land- und Forstwirtschaft, Gartenbau, Fischereiwirtschaft, Hauswirtschaft
    Notizen: Abstract Understanding the fate of different forms of nitrogen (N) fertilizers applied to soils is an important step in enhancing N use efficiency and minimizing N losses. The growth and N uptake of two citrus rootstocks, Swingle citrumelo (SC), and Cleopatra mandarin (CM), seedlings were evaluated in a pot experiment using a Candler fine sand (hyperthermic, uncoated, Typic Quartzipsamments) without N application or with 400 mg N kg–1 applied as urea or controlled-release fertilizers (CRF; either as Meister, Osmocote, or Poly-S). Meister and Osmocote are polyolefin resin-coated urea with longevity of N release for 270 days (at 25°C). Poly-S is a polymer and sulfur-coated urea with release duration considerably shorter than that of either Meister or Osmocote. The concentrations of 2 M KCl extractable nitrate nitrogen (NO3 –-N) and ammonium nitrogen (NH4 +-N) in the soil sampled 180 days and 300 days after planting were greater in the soil with SC than with CM rootstock seedlings. In most cases, the extractable NH4 + and NO3 – concentrations were greater for the Osmocote treatment compared to the other N sources. For the SC rootstock seedlings, dry weight was greater with Meister or Poly-S compared with either Osmocote or urea. At the end of the experiment, ranking of the various N sources, with respect to total N uptake by the seedlings, was: Meister = Osmocote 〉 Poly-S 〉 Urea 〉 no N for CM rootstock, and Meister = Poly-S = Osmocote 〉 Urea 〉 no N for SC rootstock. The study demonstrated that for a given rate of N application the total N uptake by seedlings was greater for the CRF compared to urea treatment. This suggests that various N losses were lower from the CRF source as compared to those from soluble fertilizers.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    ISSN: 1573-5036
    Schlagwort(e): denitrification ; denitrifier ; dissolved organic carbon ; groundwater ; vadose zone
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Land- und Forstwirtschaft, Gartenbau, Fischereiwirtschaft, Hauswirtschaft
    Notizen: Abstract A portion of nitrate (NO 3 − ), a final breakdown product of nitrogen (N) fertilizers, applied to soils and/or that produced upon decomposition of organic residues in soils may leach into groundwater. Nitrate levels in water excess of 10 mg L−1 (NO3–N) are undesirable as per drinking water quality standards. Nitrate concentrations in surficial groundwater can vary substantially within an area of citrus grove which receives uniform N rate and irrigation management practice. Therefore, differences in localized conditions which can contribute to variations in gaseous loss of NO 3 − in the vadose zone and in the surficial aquifer can affect differential concentrations of NO3–N in the groundwater at different points of sampling. The denitrification capacity and potential in a shallow vadose zone soil and in surficial groundwater were studied in two large blocks of a citrus grove of ‘Valencia’ orange trees (Citrus sinensis (L.) Obs.) on Rough lemon rootstock ( Citrus jambhiri (L.)) under a uniform N rate and irrigation program. The NO3–N concentration in the surficial groundwater sampled from four monitoring wells (MW) within each block varied from 5.5- to 6.6-fold. Soil samples were collected from 0 to 30, 30 to 90, or 90 to 150 cm depths, and from the soil/groundwater interface (SGWI). Groundwater samples from the monitoring wells (MW) were collected prior to purging (stagnant water) and after purging five well volumes. Without the addition of either C or N, the denitrification capacity ranged from 0.5 to 1.53, and from 0.0 to 2.25 mg N2O–N kg−1 soil at the surface soil and at the soil/groundwater interface, respectively. The denitrification potential increased by 100-fold with the addition of 200 mg kg−1 each of N and C. The denitrification potential in the groundwater also followed a pattern similar to that for the soil samples. Denitrification potential in the soil or in the groundwater was greatest near the monitor well with shallow depth of vadose zone (MW3). Cumulative N2O–N emission (denitrification capacity) from the SGWI soil samples and from stagnant water samples strongly correlated to microbial most probable number (MPN) counts (r2 = 0.84 – 0.89), and dissolved organic C (DOC) (r2 = 0.96 – 0.97). Denitrification capacity of the SGWI samples moderately correlated to water-filled pore space (WFPS) (r2 = 0.52). However, extractable NO3-N content of the SGWI soil samples poorly (negative) correlated to denitrification capacity (r2 = 0.35). However, addition C, N or both to the soil or water samples resulted in significant increase in cumulative N2O emission. This study demonstrated that variation in denitrification capacity, as a result of differences in denitrifier population, and the amount of readily available carbon source significantly (at 95% probability level) influenced the variation in NO3–N concentrations in the surficial groundwater samples collected from different monitoring wells within an area with uniform N management.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Digitale Medien
    Digitale Medien
    Springer
    Water, air & soil pollution 116 (1999), S. 587-595 
    ISSN: 1573-2932
    Schlagwort(e): groundwater ; nitrogen ; sandy soils
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Energietechnik
    Notizen: Abstract Application of soluble forms of nitrogen (N) fertilizers to citrus trees in sandy soils of central Florida may cause leaching of NO 3 − below the rooting depth. A leaching column study was conducted to evaluate the leaching of urea, NH 4 + and NO3 − forms of N from calcium nitrate, urea, and urease inhibitor coated urea (Agrotain: N-(-n butyl) thiophosphoric triamide (NBPT)) applied to a Candler fine sand (hyperthermic, uncoated Typic Quartzipsamments) during six cycles of intermittent leaching with 220 mL each of water (total 1320 mL) through the soil columns (equivalent to 30 cm rainfall). The amount of NO3-N recovered in the leachate from calcium nitrate treated soil accounted for 43% of the total N applied. Leaching of N from urea and Agrotain treated soil was pronounced during the second and third leaching events. Cumulative leaching of urea form of N accounted for 12 and 8% of total N applied as urea and Agrotain, respectively. The cumulative amounts of NO3-N and NH4-N recovered in six leachate fractions from urea treated soil accounted for 14 and 21%, respectively, of the total N applied to the column. The corresponding values for the Agrotain treated soil were 8 and 17%, respectively. Soil analysis after the completion of leaching showed no urea throughout the entire depth of column in either urea or Agrotain treatments. The total recovery of N (leachate plus soil) was 48.1, 40.4, and 49.7% of total N applied as urea, Agrotain, and calcium nitrate, respectively. This study demonstrated a significant reduction in leaching of N forms from Agrotain as compared with that from urea.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...