Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Electronic Resource  (2)
  • AraC  (1)
  • Asymbiotic  (1)
  • 1
    ISSN: 1617-4623
    Keywords: Key words Transcriptional regulator ; AraC ; Rhizobium ; Symbiosis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Rhizobium sp. BR816 contains four nodD alleles of which nodD 3 is the most important transcriptional regulator for nodulation of Phaseolus vulgaris. Upstream of nodD 3 an open reading frame, orf816, was identified. The deduced ORF816 protein shows homology with transcriptional regulators of the AraC/XylS family. The DNA binding domain and the consensus motif, characteristic of the C-terminal region of the members of this family of transcriptional regulators, are present in the deduced ORF816 protein. Activation of nodA gene expression and nodulation of P. vulgaris by Rhizobium sp. NGR234nodD 1 :: Ω (Nod−) complemented with the Rhizobium sp. BR816 nodD 3 gene were significantly increased in the presence of orf816. This increased nodulation and nod gene induction are mediated through positive regulation of nodD 3 expression by ORF816. Expression of orf816 itself is partially RpoN dependent. The role of this transcriptional regulator in the complex cascade regulation of the Rhizobium sp. nodD 3 gene is discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 51 (1979), S. 27-37 
    ISSN: 1573-5036
    Keywords: Bacteria ; Asymbiotic ; N-fixers ; Azotobacter ; Clostridia ; Straw ; N-fixation ; Nitrogenase ; Nile delta soil ; Environment
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary The pattern of N2-ase activity in clay-loam soil of Nile Delta was determined. However, unamended soil showed somewhat low activity: an amount of 18–95 mg N2 fixed/kg soil/year was calculated. Addition of glucose greatly enhanced such activity and efficiencies of N2-fixation increased with decreasing carbon source concentration. Highest activities (800 n moles C2H4/gh−1) and efficiencies (18.06 mg N2/g glucose added) were reported in soil amended with 1% glucose, adjusted to 50% W.H.C. and incubated at 30°C. Enrichment of the soil with straw lead to a significant nitrogen gain particularly under water-logged conditions. During a short period of 16 days 5.8–9.3 mg N2 were fixed/g straw added at the latter conditions.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...