Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Electronic Resource  (2)
  • Bone marrow transplantation  (1)
  • Doxorubicin  (1)
  • 1
    ISSN: 1432-0533
    Keywords: Key words Myelinated axon ; Primary sensory neuron ; Posterior column ; Morphometry ; Doxorubicin
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The present study was undertaken to obtain morphologic data about the posterior column of the spinal cord to characterize ascending myelinated axons of primary sensory neurons of the sciatic nerve. By applying doxorubicin to the right sciatic nerve in eight male Wistar rats, selective degeneration of centrally directed axons of these neurons in the posterior column was produced. Epon-embedded transverse sections of the posterior column at spinal cord segments C1, C3, C8, T6, L3 and L5 showed a circumscribed area (R) that contained a cluster of degenerated myelinated fibers. To characterize area R, its size and distances between various defined points on transverse sections of the posterior column were measured and compared at several spinal segments. The location of area R was illustrated in representative rats. The posterior intermediate septum corresponded to the lateral border of area R at C8 and T6. To characterize the putatively degenerating and degenerated myelinated fibers, area L in the left posterior column, corresponding to area R, was defined, and subsequently the number and size distribution of normal-appearing myelinated fibers in areas R and L were evaluated at C3, T6 and L3 in four rats. After comparative evaluation of these data, it was concluded that large myelinated fibers degenerated preferentially in area R. The number of putatively degenerating and degenerated myelinated fibers in area R at segments C3 and T6 was estimated to be 38.6% and 50.1%, respectively, of that at segment L3.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1619-0904
    Keywords: In vivo tissue engineering ; Bone marrow transplantation ; bFGF ; Release system of angiogenic growth factors ; Revascularization
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine , Technology
    Notes: Abstract For successful in vivo tissue engineering, a growth factor release system will be useful. We adopted autologous bone marrow transplantation as an angiogenic growth factor release system. Bone marrow transplanted into a synthetic vascular prosthesis produced continuous synthesis of angiogenic growth factors, resulting in rapid neointima formation on the prosthesis after implantation. We expected a similar angiogenic phenomenon to occur if bone marrow was transplanted into ischemic myocardium. Bone marrow was transplanted into ischemic myocardium created in dogs. Marrow cells continued synthesis of angiogenic growth factors, which were effective in protecting the capillary network from ischemia, but not myocytes. Autologous bone marrow was injected intramuscularly into ischemic myocardium created in the left ventricular wall of dogs. Control operations were performed without bone marrow. On days 3 and 7, marrow cells survived, and their adjacent cells and the surrounding extracellular matrix were immunohistochemically bFGF reactive. At 3 weeks, no marrow cells were identified. Myocytes disappeared, but the capillary blood vessel networks remained. With some exceptions, these capillaries did not contain blood cell components. In the controls, scar tissue with a very small number of capillaries was formed. In conclusion, marrow cells survived for a short period of time after transplantation, and continued synthesis of angiogenic growth factors, which were effective in protecting endothelial cells from ischemia, but not myocytes. Therefore, the results also suggest that there are limitations in the treatment of ischemic myocardium using angiogenic growth factors alone.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...