Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Electronic Resource  (2)
  • Ca2+ metabolism  (1)
  • relative drug potencies  (1)
  • 1
    ISSN: 1573-4935
    Keywords: bioenergetics of immune functions ; human peripheral blood mononuclear cells ; energy metabolism ; concanavalin A ; nongenomic glucocorticoid effects ; relative drug potencies
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract The first quantitative findings on the energy metabolism of human immunecells are presented. In quiescent peripheral blood mononuclear cells(PBMC) protein biosynthesis and Na+,K+-ATPase activity eachaccounted for 8% of cellular oxygen consumption. Stimulation with 25, 50,and 75 μg Con A/ml (1.25, 2.5 or 3.75 μg/106 cells) increased totaloxygen consumption within seconds by 8, 36, and 53%, respectively. Afteraddition of 75 μg Con A/ml, the proportion of cellular oxygenconsumption due to protein biosynthesis, Na+,K+-ATPase activity,and Ca2+-ATPase activity was 15% each and that due to DNA/RNAsynthesis was 8%. On the basis of these findings the immediate effectsof five different glucocorticoids on cellular energy metabolism wereinvestigated. The various glucocorticoids exerted basically the sameinhibitory effects on Con A-stimulated cellular respiration and individualATP-consuming processes, but differed significantly in potency. Similar toprevious studies on rat thymocytes, the relative potencies of theglucocorticoids were found to be: prednylidene (1.7)〈dexamethasone(1.5)〈methylprednisolone (1.0)〈prednisolone (0.3)〈betamethasone(〉0.2). Given their rapidity of onset, these effects must benongenomically mediated. The differences between the relative potencies ofthe various glucocorticoids for these effects and those for the classicalgenomic effects have important clinical implications, in particular forhigh-dose systemic and local glucocorticoid therapy.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-4935
    Keywords: methylprednisolone ; thymocytes ; ConA ; energy metabolism ; oxygen consumption ; Ca2+ metabolism
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract The short-term effects of high concentrations of Methylprednisolone (MP) on the energy metabolism of quiescent and Concanavalin A-stimulated rat thymocytes were investigated in vitro. Concanavalin A (ConA) stimulated the respiration rate of quiescent thymocytes by 35%. Addition of more than 0.15 mg MP/107 cells to ConA-stimulated cells reversed this respiratory stimulation; in addition, higher concentrations of MP caused a similar progressive decrease in the rate of respiration of both quiescent and ConA-stimulated cells. Similarly, the stimulation of respiration by ConA was greatly reduced in MP-treated cells. MP addition lowered cytoplasmic [Ca2+] and, at high concentrations, abolished the ability of ConA to increase [Ca2+]. Thus MP both reverses and prevents the immediate stimulation of thymocytes by ConA. In quiescent thymocytes, MP strongly inhibited that part of the oxygen consumption used to drive the cycle of Na+ influx across the plasma membrane and Na+ efflux on the Na+K+-ATPase, but did not inhibit oxygen consumption used to drive protein synthesis. In ConA-stimulated thymocytes MP had the same effects and also strongly inhibited oxygen consumption dependent on the cycle of Ca2+ influx across the plasma membrane and Ca2+ efflux on the Ca2+-ATPase, but had little effect on oxygen consumption used to drive RNA and DNA synthesis. These results show that MP prevents cation cycling in thymocytes (either by preventing cation influx or by inhibiting cation pumps) and prevents mitogenic stimulation of the cells. The high MP concentration required and the speed of onset of the effect (lless than 30s) provide strong evidence that these effects of MP are not mediated by glucocorticoid receptors and subsequent activation of gene expression. They may be caused by direct effects of MP on the properties of the plasma membrane. These effects are considered to be, at least partially, responsible for the beneficial results that currently have been obtained using MP megadoses in various clinical situations.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...