Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Electronic Resource  (20)
  • Chemical Engineering  (16)
  • crystallization  (3)
  • PET  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Colloid & polymer science 265 (1987), S. 193-205 
    ISSN: 1435-1536
    Keywords: Poly(TMPS) ; in situ ; SAXS ; crystallization ; kinetics
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The isothermal crystallization kinetics of poly(TMPS) has been measured by ISSAXS and results obtained for a molecular weight fraction (21,000) below the critical entanglement molecular weight (25,000) and another one above it (371,000). The SAXS intensity vs. time curves suggest that a single transformation mechanism exists. The SAXS long period is independent of crystallization time for both poly(TMPS) fractions. However the interlamellar thickness contribution to the long period is dependent upon molecular weight and crystallization temperature, increasing with temperature and molecular weight. The crystallite contribution also increases over the range studied. Both fractions exhibit a significant, but reversible decrease in thickness on cooling the sample from the crystallization temperature to room temperature and recyling again. The change is more pronounced for 371,000 specimen in keeping with its lower crystallinity. The path dependence of lamellar dimensions has significant implications in the morphological characterization of polymers annealed or crystallized at one temperature and then measured at another one.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 29 (1989), S. 405-414 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Poly(ether-ether-ketone) (PEEK) is a newly developed engineering thermoplastic with potentially vast application in advanced composites due to its exceptional performance. It is thus desired to understand the relationship between physical processing, microstructure and fracture in this semicrystalline polymer. Both oriented and unoriented PEEK were mechanically characterized using static test of three-point bend specimens. The molecular chain orientation was imposed using a rolltrusion technique. The effects of thickness, strain rate, Initial crack length ratio, and orientation on fracture toughness (Kc) are investigated. The crystallinity is also examined by density measurement. The degree of orientation is determined qualitatively by wide-angle X-ray scattering diffraction patterns and quantitatively by further measurement using an image analysis system. Fractographic analysis, using scanning electron microscopy, provides precise information about the mode of fracture, Results indicate that both the modulus and the fracture toughness are remarkedly increased in the direction of drawing (T-type) as opposed to the transverse direction (L-type).
    Additional Material: 15 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 31 (1991), S. 661-666 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Removal of the heat of fusion during steady-state crystallization in a high-speed spinline places restrictions on the morphology of the crystallites. An appropriate model is that of a thermal dendrite. It is shown that for this case there exists at each temperature along the threadline a limiting growth velocity, beyond which heat cannot be conducted away fast enough to permit growth. It is suggested that crystallization occurs when a fluid element reaches a temperature at which heat can just be conducted away rapidly enough. Comparison of dendrite theory predictions with experimental values of crystallite diameter and crystallization temperature shows satisfactory agreement. Poly(ethylene terephthalate) has been taken as the example.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 32 (1992), S. 964-970 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The relationships between the supermolecular structure of poly(ethylene terephthalate) films subjected to cold drawing and subsequent zone annealing and their mechanical properties are investigated. The effectiveness of zone annealing is compared to that of annealing with fixed ends. Microstructural changes occurring during heat treatment and zone annealing are monitored using wide angle X-ray scattering, small angle X-ray scattering, infrared spectroscopy, differential scanning calorimetry, and static mechanical tests. The very high modulus and strength of the zone-annealed films are directly attributed to the large number of the molecules connecting the crystallites.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 33 (1995), S. 125-133 
    ISSN: 0887-6266
    Keywords: mechanical deformation ; PET ; high-temperature deformation ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The mechanical properties of poly(ethylene terephthalate) (PET) fibers at temperatures above the glass transition are investigated by means of a specially constructed device. Measurements of the deformation rate and of the “dynamic” stress-strain curves of the fibers are performed in nearly isothermal regime (after initial rapid heating) in a temperature interval 100-200°C. The results reported in the present work demonstrate that the high-temperature mechanical characteristics of rapidly crystallizing polymers can be deduced to a satisfactory precision, while keeping the crystallinity development at low level. Our investigations indicate that if the high-temperature deformation is sufficiently fast, the polymer behavior is similar to the deformation at sub-Tg temperatures. Based on this similarity, a qualitative model of the deformation in the high-temperature region is proposed. The proposed model is fundamentally equivalent to the models describing mechanical deformation of glassy polymers at temperatures below the glass transition. ©1995 John Wiley & Sons, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 873-888 
    ISSN: 0887-6266
    Keywords: crystallization ; polymer blends ; pattern formation ; numerical simulation ; syndiotactic polystyrene ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The development of texture which exists in polymer spherulites grown from single phase melts containing an appreciable amount of noncrystallizable material was investigated. This texture generally consists of lamellar bundles separated by amorphous regions, both of which are typically 0.1-1 μm thick. A space-time finite element model previously developed by us was used to simulate the growth of a group of polymer lamellae. The model determines the impurity concentration field in the melt surrounding the growing lamellae and tracks the growth of each lamella. Important variables are the initial melt concentration of noncrystallizable material, the mass diffusion coefficient of noncrystallizable species, lamellar thickness, long period, and the rate of molecular attachment at the growth front. Under certain conditions, bundles did indeed develop during the simulations. These results were used to predict bundle thicknesses. The predictions of bundle texture were compared to actual textures observed in blends of syndiotactic and atactic polystyrene. It was found both experimentally and numerically that bundle thickness was a strong function of crystallization temperature and a relatively weak function of both the initial composition of noncrystallizable species and the degree of crystallinity of the lamellar stack. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 873-888, 1998
    Additional Material: 25 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 2311-2325 
    ISSN: 0887-6266
    Keywords: poly(ethylene oxide) ; crystallization ; AFM ; spherulites ; crystal growth ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The atomic force microscope (AFM) has been used to investigate morphological development during the crystallization of poly(ethylene oxide) (PEO) from the melt. PEOs with molecular weights of 1 × 105 and 7 × 106 were used. Height and amplitude images were recorded, using the tapping mode. For both polymers, the mode of spherulite development varied with the velocity of the growth front. For slow growth velocities, the growth of the crystallites was linear, with growth initially occurring by single lamellae, later developing into growth arms by screw dislocation spawning of crystallites. At intermediate growth velocities, stacks of lamellae develop rapidly. The splaying apart of adjacent crystals and growth arms is abundant. The operation of growth spirals was observed directly in this growth velocity range. The crystals formed by the giant screw dislocations diverge immediately from the original growth direction, providing a source of interlamellar splaying. At low and intermediate velocities, the front propagates by the advance of primary growth arms, with the regions between the arms filled in by arms growing behind the primary front. At the highest velocity observed here, the formation of lamellar bundles and immediate splaying results in recognizable spherulites developing at the earliest stages of crystallization. The change from linear growth to splaying and nonlinear growth are qualitatively explained in terms of driving force, elastic resistance and the presence of compositional and/or elastic fields in the melt. © 1998 John Wiley & Sons, Inc. J. Polym. Sci. B Polym. Phys. 36: 2311-2325, 1998
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 9 (1969), S. 331-338 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: A useful concept in polymer science is the degree of crystallinity - the fraction of the polymer that exists in a relatively ordered state. Methods of determination of the degree of crystallinity using density, infrared, thermal, N.M.R. and X-ray measurements are examined in light of modern notions of the structure of semi-crystalline polymers.
    Additional Material: 1 Tab.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 24 (1984), S. 770-785 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Microstructural features of semicrystalline polymers are reviewed, as are the roles of chain properties and thermal history in their development. Experimental results relating failure properties to microstructural detail are described. General models to explain inter- and intra-spherulitic failure behavior are proposed. Important are (a) the role of spherulite size in boundary incompatibility, (b) competition between spherulite boundary cracking and intraspherulitic yielding, (c) competition between localized (interspherulitic) fracture and dispersed (intraspherulitic) fracture.
    Additional Material: 26 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 21 (1981), S. 776-781 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The microstructural changes in isotactic polypropylene (PP), subsequent to quench from the melt to around Tg were studied using dynamic mechanical loss, volume dilatometry, small and wide angle X-ray scattering, infrared and NMR spectroscopy. The β-transition loss tangent and the specific volume decreased linearly with logarithm of aging time. Dynamic mechanical loss and NMR spectroscopy results established that amorphous chain mobility reduced during aging. X-ray and IR techniques showed that the crystallinity, the crystalline density, and the average chain conformation do not change during aging. Tensile tests indicated that diffusion of air or moisture into the polymer is not a competitive mechanism for the aging phenomenon. A simple free-volume model is quantitatively consistent with these observations. The fraction of the material which cannot age increased as the quench temperature decreased. Further, at lower temperatures a portion of the nonageable fraction is shown to reside in the amorphous fraction.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...