Library

Language
Preferred search index
Number of Hits per Page
Default Sort Criterion
Default Sort Ordering
Size of Search History
Default Email Address
Default Export Format
Default Export Encoding
Facet list arrangement
Maximum number of values per filter
Auto Completion
Feed Format
Maximum Number of Items per Feed
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Electronic Resource  (1)
  • D-1 Blockade  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Psychopharmacology 99 (1989), S. S6 
    ISSN: 1432-2072
    Keywords: Clozapine ; D-1 Blockade ; Behavioural effects
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The selection and early development of clozapine was based upon its gross behavioural, arousal-inhibiting, sleep-promoting, and caudate spindle-prolonging properties. Compared to classical neuroleptics, clozapine causes only a short-lasting elevation of plasma prolactin levels, elevates both striatal homovanillic acid and dopamine content, is devoid of marked apomorphine-inhibitory or cataleptogenic activity and fails to induce supersensitivity of striatal dopaminergic systems after chronic administration. Clozapine's intrinsic anticholinergic activity, while stronger than that of other neuroleptic agents, does not appear to underlie either its failure to induce tardive dyskinesias or its superior antipsychotic activity. Furthermore, the overlap between clozapine and several classical neuroleptics with regard to alpha-adrenergic-, serotonin- and histamine-blocking activity makes it unlikely that one or more of these properties is the key to its atypical characteristics. More recent findings show that clozapine and classical neuroleptics differ with regard to their indirect effects on nigral GABA-ergic mechanisms implicated in the induction of tardive dyskinesias and, possibly in keeping with this, that clozapine and similar agents exhibit preferential blockade of D-1 dopamine receptors in the whole animal. Such an action of clozapine in man could well explain both its low EPS liability and, in some subjects, its superior antipsychotic activity.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...