Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Electronic Resource  (2)
  • Fingerprinting  (1)
  • Integrative transformation  (1)
  • 1
    ISSN: 1432-0983
    Keywords: Key wordsCandida krusei ; Fingerprinting ; Probe ; Repeated sequence
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract CkF1,2 has been reported as an effective DNA fingerprinting probe of Candida krusei. It is composed of two genomic EcoRI-restriction fragments, F1 and F2, which are approximately 5.4 and 5.2 kb, respectively. Sequence analysis of F1 reveals that it is 5261 bp-long, has a GC content of 42.2 mol%, and originates from the intergenic region of the ribosomal RNA cistrons (IGR). F1 comprises 488 bp of the 3′ end of a 25s rRNA gene, a non-transcribed spacer region 1 (NTS1), a 5s gene (121 bp), and a major portion of the non-transcribed spacer region 2 (NTS2). A 1256 bp-long repeated sequence, CKRS-1, with a GC content of 35 mol%, has been identified in NTS2. CKRS-1 contains eight tandemly repeated sub-elements, kre-0 to kre-7. The first two, kre-0 and kre-1, are 164 bp-long, the next five sub-elements, kre-2 to kre-6, are 165 bp-long, and the last element, kre-7, is 103 bp-long. The eight sub-elements share nucleotide-sequence homologies between 66 to 100%, with kre-2, kre-3 and kre-4 identical, and kre-0 the most divergent. Shorter repeated sequences were also identified in three regions of F1, which were named domains ``a'', ``b'' and ``c''. Restriction mapping, cross hybridization, and direct comparison of sequences show that F1 and F2 are polymophic forms of the IGR and their size difference is due both to the number of kre sub-elements in CKRS-1 and to a 24-bp deletion in domain ``b''. While F1 contains eight kre sub-elements, F2 contains seven. In C. krusei strain K31, four polymorphic forms of CKRS-1 have been identified containing five, six, seven and eight kre sub-elements. CKRS-1 is dispersed on three of the chromosomes of highest molecular weights separated by transverse alternating-field electrophoresis. CKRS-1 does not hybridize significantly to any transcription product. Polymorphisms in single DNA fingerprints and differences between the DNA fingerprints of strains of C. krusei based upon CkF1,2 hybridization patterns therefore appear to be based, at least in part, on the variable number of tandemly repeated kre sub-elements in CKRS-1.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1617-4623
    Keywords: Candida albicans ; Integrative transformation ; Phenotypic switching ; Recombination
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The phase transition between the white and opaque phenotypes in the switching system of Candida albicans strain WO-1 is accompanied by the differential expression of the white-specific gene WH11 and the opaque-specific gene PEP1. The frequency of integrative transformation at the white-specific gene locus WH11 is between 4.5 and 7.0 times more frequent in white than in opaque spheroplasts, and the frequency of disruptive transformation at the opaque-specific gene locus PEP1 is 30.5 times more frequent in opaque spheroplasts than in white spheroplasts. In contrast, the frequencies of integrative transformation at the constitutively expressed loci ADE2 and EF1α2 are similar in the white and opaque phases. Therefore, the frequency of integration of linear plasmid DNA containing sequences of phase-specific genes correlates with the transcriptional state of the targeted locus.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...