Library

Language
Preferred search index
Number of Hits per Page
Default Sort Criterion
Default Sort Ordering
Size of Search History
Default Email Address
Default Export Format
Default Export Encoding
Facet list arrangement
Maximum number of values per filter
Auto Completion
Feed Format
Maximum Number of Items per Feed
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Electronic Resource  (1)
  • Gene knock-out  (1)
  • 1
    ISSN: 1432-0878
    Keywords: Key words Exocytosis ; “J” domain ; Gene knock-out ; Temperature-sensitive paralysis ; Chaperone ; Calcium channel ; Drosophila melanogaster (Insecta)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract  The “cysteine string protein” (CSP) genes of higher eukaryotes code for a novel family of proteins characterized by a “J” domain and an unusual cysteine-rich region. Previous studies had localized the proteins in neuropil and synaptic terminals of larval and adult Drosophila and linked the temperature-sensitive paralysis of the mutants described here to conditional failure of synaptic transmission. We now use the null mutants as negative controls in order to reliably detect even low concentrations of CSPs by immunohistochemistry, employing three monoclonal antibodies. In wild-type flies high levels of cysteine string proteins are found not only in apparently all synaptic terminals of the embryonic, larval, and adult nervous systems, but also in the “tall cells” of the cardia, in the follicle cells of the ovary, in specific structures of the female spermatheca, and in the male testis and ejaculatory bulb. In addition, low levels of CSPs appear to be present in all tissues examined, including neuronal perikarya, axons, muscles, Malpighian tubules, and salivary glands. Western blots of isolated tissues demonstrate that of the four isoforms expressed in heads only the largest is found in non-neural organs. The wide expression of CSPs suggests that at least some of the various phenotypes of the null mutants observed at permissive temperatures, such as delayed development, short adult lifespan, modified electroretinogram, and optomotor behavior, may be caused by the lack of CSPs outside synaptic terminals.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...