Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Electronic Resource  (3)
  • cation cotransport  (2)
  • Life Sciences  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    The journal of membrane biology 107 (1989), S. 57-62 
    ISSN: 1432-1424
    Keywords: Pseudomonas aeruginosa ; cation cotransport ; branched-cham amino acids
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Summary A transport system for branched-chain amino acids (designated as LIV-II system) inPseudomonas aeruginosa requires Na+ for its operation. Coupling cation for this system was identified by measuring cation movement during substrate entry using cation-selective electrodes. Uptakes of Na+ and Li− were induced by the imposition of an inwardly-directed concentration gradient of leucine, isoleucine, or valine. No uptake of H− was found, however, under the same conditions. In addition, effects of Na+ and Li+ on the kinetic property of the system were examined. At chloride salt concentration of 2.5mm, values of apparentK m andV max for leucine uptake were larger in the presence of Na+ than Li+. These results indicate that the LIV-II transport system is a Na+(Li+)/substrate cotransport system, although effects of Na+ and Li+ on kinetics of the system are different.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    The journal of membrane biology 84 (1985), S. 157-164 
    ISSN: 1432-1424
    Keywords: proline transport ; cation cotransport ; harmaline
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Summary Na+ and Li+ were found to stimulate the transport ofl-proline by cells ofEscherichia coli induced for proline utilization. The gene product of the put P gene is involved in the expression of this transport activity since the put P+ strains CSH 4 and WG 148 show activity and the put P− strain RM 2 fails to show this cation coupled transport. The addition of proline was found to stimulate the uptake of Li+ and of Na+. Attempts to demonstrate proline stimulated H+ uptake were unsuccessful. It is concluded that the proline carrier (coded by the put P gene) is responsible for Na+ (or Li+)-proline cotransport.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Supramolecular Structure 7 (1977), S. 15-27 
    ISSN: 0091-7419
    Keywords: protonmotive force ; active transport ; energy transduction ; E. coli ; Life Sciences ; Molecular Cell Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Membrane vesicles of Escherichia coli can be produced by 2 different methods: lysis of intact cells by passage through a French pressure cell or by osmotic rupturing of spheroplasts. The membrane of vesicles produced by the former method is everted relative to the orientation of the inner membrane in vivo. Using NADH, D-lactate, reduced phenazine methosulfate, or ATP these vesicles produce protonmotive forces, acid and positive inside, as determined using flow dialysis to measured the distribution of the weak base methylamine and the lipophilic anion thiocyanate. The vesicles accumulate calcium using the same energy sources, most likely by a calcium/proton antiport. Calcium accumulation, therefore, is presumably indicative of a proton gradient, acid inside.The latter type of vesicle, on the other hand, exhibits D-lactate-dependent proline transport but does not accumulate calcium with D-lactate as an energy source. NADH oxidation or ATP hydrolysis, however, will drive the transport of calcium but not proline in these vesicles. Oxidation of NADH or hydrolysis of ATP simultaneous with oxidation of D-lactate does not result in either calcium or proline transport. These results suggest that the vesicles are a patchwork or mosiac, in which certain enzyme complexes have an orientation opposite to that found in vivo, resulting in the formation of electrochemical proton gradients with an orientation opposite to that found in the intact cell. Other complexes retain their original orientation, making it possible to set up simultaneous proton fluxes in both directions, causing an apparent uncoupling of energy-linked processes. That the vesicles are capable of generating protonmotive forces of the opposite polarity was demonstrated by measurements of the distribution of acetate and methylamine (to measure the ΔpH) and thiocyanate (to measure the Δψ).
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...