Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0428
    Keywords: Key words Maturity-onset diabetes of the young ; glucokinase ; adenosine deaminase ; pituitary adenylate cyclase-activation polypeptide receptor ; hexokinase II ; glucagon-like peptide-1 receptor ; polymerase chain reaction ; linkage analysis.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Maturity-onset diabetes of the young (MODY) is a form of non-insulin-dependent diabetes mellitus characterised by an early age of onset and an autosomal dominant mode of inheritance. Only a proportion of cases are due to mutations in the glucokinase gene. We have studied five Caucasian MODY families, including the first MODY family to be described, with five candidate genes implicated in regulation of insulin secretion. The affected subjects showed more marked hyperglycaemia than that found in subjects with glucokinase mutations. We assessed polymorphic markers close to the genes for glucokinase, hexokinase II, adenosine deaminase, pituitary adenylate cyclase-activating polypeptide receptor, and glucagon-like peptide-1 receptor. Linkage analysis with diabetes gave cumulative log of the odds (LOD) scores of less than –3, implying that mutations in these genes are unlikely to provide a major genetic contribution to this form of MODY. [Diabetologia (1995) 38: 1055–1060]
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0428
    Keywords: Keywords Diabetes mellitus ; MODY ; glucokinase mutations ; insulin secretion ; genetics.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Mutations in glucokinase are associated with defects in insulin secretion and hepatic glycogen synthesis resulting in mild chronic hyperglycaemia, impaired glucose tolerance or diabetes mellitus. We screened members of 35 families with features of maturity-onset diabetes of the young for mutations in the glucokinase gene and found 16 different mutations. They included 14 new mutations in the glucokinase gene: 9 missense mutations (A53S, G80A, H137R, T168P, M210T, C213R, V226M, S336L and V367M); 2 nonsense mutations (E248X and S360X); a deletion of one nucleotide resulting in a frameshift (V401del1); a substitution of a conserved nucleotide at a splice acceptor site (L122-1G → T); and a 10 base pair deletion that removed the GT of the splice donor site and the following eight nucleotides (K161 + 2del10). In addition, we found two previously identified mutations: R186X and G261R. Study of 260 subjects with glucokinase-deficient hyperglycaemia from 42 families with 36 different GCK mutations made it possible to define the clinical profile of this subtype of non-insulin-dependent diabetes mellitus (NIDDM). Hyperglycaemia due to glucokinase deficiency is often mild (fewer than 50 % of subjects have overt diabetes) and is evident during the early years of life. Despite the long duration of hyperglycaemia, glucokinase-deficient subjects have a low prevalence of micro- and macro-vascular complications of diabetes. Obesity, arterial hypertension and dyslipidaemia are also uncommon in this form of NIDDM. [Diabetologia (1997) 40: 217–224]
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-0428
    Keywords: Maturity-onset diabetes of the young ; glucokinase ; adenosine deaminase ; pituitary adenylate cyclase-activation polypeptide receptor ; hexokinase II ; glucagon-like peptide-1 receptor ; polymerase chain reaction ; linkage analysis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Maturity-onset diabetes of the young (MODY) is a form of non-insulin-dependent diabetes mellitus characterised by an early age of onset and an autosomal dominant mode of inheritance. Only a proportion of cases are due to mutations in the glucokinase gene. We have studied five Caucasian MODY families, including the first MODY family to be described, with five candidate genes implicated in regulation of insulin secretion. The affected subjects showed more marked hyperglycaemia than that found in subjects with glucokinase mutations. We assessed polymorphic markers close to the genes for glucokinase, hexokinase II, adenosine deaminase, pituitary adenylate cyclase-activating polypeptide receptor, and glucagon-like peptide-1 receptor. Linkage analysis with diabetes gave cumulative log of the odds (LOD) scores of less than -3, implying that mutations in these genes are unlikely to provide a major genetic contribution to this form of MODY.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-0428
    Keywords: Keywords Maturity-onset diabetes of the young ; MODY ; transcription factor ; nuclear receptor ; HNF-4γ ; diabetes mellitus ; insulin ; genetics ; mutation.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Aims/hypothesis. Mutations in the transcription factor hepatocyte nuclear factor (HNF)-4α are the cause of one form of maturity-onset diabetes of the young, MODY1. The HNF-4γ is structurally related to HNF-4α and is expressed together with HNF-4α in pancreatic islets. We therefore tested the hypothesis that genetic variation in the HNF-4γ gene (HNF4G) is associated with MODY in Japanese subjects. Methods. We screened the protein coding region of HNF4G (exons 3–11) for mutations in 57 unrelated Japanese subjects with MODY by amplifying each exon and adjacent intron region using the polymerase chain reaction (PCR) and specific primers and then directly sequencing the PCR products. The frequency of each variant was compared between patients with MODY and a group of non-diabetic subjects. Results. We found ten sequence variants, two of these were located in exons: exon 6, a silent substitution in codon 144, c.432A/G and exon 7, a G-to-A substitution in codon 190 (c.570G/A) resulting in a conservative Met-to-Ile substitution (M/I190) in the putative ligand-binding region of HNF-4γ protein. The remaining eight variants were located in introns. There was no significant difference in the frequency of these polymorphisms between subjects with MODY and non-diabetic control subjects. Conclusion/interpretation. Genetic variation in the coding region of HNF4G is unlikely to be a major cause of MODY in Japanese people. [Diabetologia (2000) 43: 1064–1069]
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...