Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Electronic Resource  (3)
  • Metabolic inhibitors  (3)
  • 1
    ISSN: 1615-6102
    Keywords: Mitosis ; ATP, Microtubules ; Spindle ; Metabolic inhibitors
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary At telophase in the diatomPinnularia, the two half spindles that comprise the central spindle, separate and then disassemble unidirectionally from the end formerly in the central overlap, back to the pole (Soranno andPickett-Heaps 1982). The metabolic inhibitors dinitrophenol plus deoxyglucose were applied to cells at telophase, depleting their ATP levels at the early stages of half-spindle disassembly; the cells were maintained in this state for 5 minutes, before the inhibitors were washed out. Disassembly of the half spindles, as judged from their birefringence, ceased in ATP-depleted conditions, and recommenced soon after the inhibitors were removed, going to completion quite rapidly. We conclude that disassembly of these MTsin vivo requires energy, probably in the form of ATP.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1615-6102
    Keywords: Mitosis ; ATP ; Metabolic inhibitors ; Spindle ; Microtubule
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary To examine the effects exerted on the microtubule (MT) cytoskeleton by dinitrophenol/deoxyglucose (DNP/DOG) and nocodazole, live PtK1 cells were treated with the drugs and then fixed and examined by immunofluorescence staining and electronmicroscopy. DNP/DOG had little effect on interphase MTs. In mitotic cells, kinetochore and some astral fibers were clearly shortened in metaphase figures by DNP/DOG. Nocodazole rapidly broke down spindle MTs (except those in the midbody), while interphase cells showed considerable variation in the susceptibility of their MTs. Nocodazole had little effect on MTs in energy-depleted (DNP/DOG-treated) cells. When cytoplasmic MTs had all been broken down by prolonged nocodazole treatment and the cells then released from the nocodazole block into DNP/DOG, some MT reassembly occurred in the ATP-depleted state. MTs in permeabilized, extracted cells were also examined with antitubulin staining; the well-preserved interphase and mitotic arrays of MTs showed no susceptibility to nocodazole. In contrast, MTs suffered considerable breakdown by ATP, GTP and ATPγS; AMPPNP had little effect. This susceptibility of extracted MT cytoskeleton to nucleotide phosphates was highly variable; some interphase cells lost all MTs, most were severely affected, but some retained extensive MT networks; mitotic spindles were diminished but structurally coherent and more stable than most interphase MT arrays. We suggest that: 1. in the living cell, ATP or nucleotide triphosphates (NTPs) are necessary for normal and nocodazole-induced MT disassembly; 2. the NTP requirement may be for phosphorylation; 3. shortening of kinetochore fibers may be modulated by compression and require ATP; 4. many of these results cannot be accomodated by the dynamic equilibrium theory of MT assembly/disassembly; 5. the use and role of ATP on isolated spindles may have to be reevaluated due to the effects ATP has on the spindle cytoskeleton of permeabilized cells.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1615-6102
    Keywords: Mitosis ; ATP ; Metabolic inhibitors ; Spindle ; Nocodazole
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Dinitrophenol and deoxyglucose (DNP/DOG) were used to investigate the effects of ATP depletion on mitotic PtK1 cells. Direct determination of cellular ATP levels showed that the drop of ATP induced by DNP/DOG was rapid; recovery to normal ATP levels was equally rapid once DNP/DOG was removed. On addition of DNP/DOG to live cells, cytoplasmic activity ceased; interphase and prophase cells showed little other response to DNP/DOG. During prometaphase, DNP/DOG induced a pronounced movement of oscillating, monopolar chromosomes towards the spindle poles. As chromosomes became bipolarly attached, DNP/DOG caused the spindle poles themselves to move together. By metaphase, DNP/DOG-treatment led to significant shortening of the spindle which remained intact. DNP/DOG rapidly stopped anaphase chromosome movement and cytokinesis. Nocodazole (NOC) caused the rapid breakdown of the mitotic spindle; prometaphase chromosomes clustered at the poles and in metaphase cells, the poles were drawn towards the chromosomes as the spindle became disorganized. When cells were pretreated with DNP/DOG and then NOC/DNP/DOG, nocodazole did not break down the spindle. When nocodazole was applied first to break down spindle MTs then DNP/DOG was added to the nocodazole, a second contraction was often induced by the DNP/DOG in the absence of spindle microtubules (MTs). Chromosomes expanded appreciably outwards from the poles when the DNP/DOG was removed, even when the cells remained in nocodazole.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...