Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Electronic Resource  (2)
  • Semithick sections  (1)
  • cell shape  (1)
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Cell Motility and the Cytoskeleton 6 (1986), S. 2-14 
    ISSN: 0886-1544
    Keywords: Allogromia ; reticulopods ; cytoskeleton ; microtubules ; actin ; saltatory transport ; cell shape ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Cytoskeletal inhibitors were used as probes to test the involvement of microtubules and actin microfilaments in the development, motility, and shape maintenance of the pseudopodial networks (i e, reticulopodia) of the foraminifers Allogromia sp strain NF and Allogromia laticcllaris. Agents that disassemble cytoplasmic microtubules (cold, colchicine, and nocodazole) arrest all movement but have variable effects on reticulopodial shape. Electron microscopy reveals a granulofibrillar matrix but few, if any, microtubules in these motility-arrested reticulopods. Allogromiids treated with cytochalasin B or D lose substrate adhesion and undergo dramatic changes in shape and motile behavior, highlighted by the coalescence of reticulopodial cytoplasm into irregularly shaped bodies with chaotic motility. Serial semithick sections of such preparations, viewed by high-voltage electron microscopy, document a striking rearrangement of microtubules within these cytochalasin-induced bodies. All aspects of cytochalasin-altered motility are completely inhibited by colchicine. Actin is present in reticulopodia, as determined by staining with rhodamine-phalloidin; this staining is not observed in cytochalasin-treated organisms. These data provide compelling evidence that microtubules are required for reticulopodial motility. An actin-based cytoskeleton is thought to play a role in maintaining shape, mediating pseudopod/substrate adhesion, and coordinating the various microtubule-dependent processes.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Journal of Electron Microscopy Technique 2 (1985), S. 11-28 
    ISSN: 0741-0581
    Keywords: Ultrastructure ; Semithick sections ; Three-dimensional ; Serial sections ; Stereomicroscopy ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Natural Sciences in General
    Notes: Many transmission electron microscopes are available which can be used to examine biological material in 0.25-0.50-μm-thick sections. When compared to the traditional thin section, these “semithick” sections possess a number of inherent advantages: They can be screened for content with the phase contrast light microscope, they facilitate many types of studies requiring an analysis of serial sections, and they are frequently the optimum thickness for stereomicroscopy. Structures such as microtubule-associated components, as well as structural relationships between cellular constituents, may also be clearly visible in semithick sections which are not visible, or go unnoticed, in thin sections. Together these advantages enable an investigator to obtain a more complete three-dimensional picture of a cell or cell component in a significantly (i.e., up to 90%) shorter period of time than would be required if thin sections were used. Semithick sections may, therefore, make a study feasible which is not approachable, or which is approachable only with great difficulty, by conventional thin sectioning techniques.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...