Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Electronic Resource  (5)
  • islet amyloid  (4)
  • Type 2 (non-insulin-dependent) diabetes mellitus  (3)
Material
  • Electronic Resource  (5)
Years
  • 1
    ISSN: 1432-0428
    Keywords: Pima Indians ; diabetes mellitus ; pancreatic islets ; islet amyloid ; islet amyloid polypeptide ; insulin resistance ; glucose tolerance
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Islet amyloid may have a pathological role in the development of Type 2 (non-insulin-dependent) diabetes mellitus. The prevalence of islet amyloid has been investigated on post-mortem pancreatic tissue from both diabetic and non-diabetic Pima Indian subjects who had previously been assessed by oral glucose tolerance tests. Islets were examined for amyloid deposits and for cellular immunoreactivity to pancreatic hormones and islet amyloid polypeptide, the constituent peptide of islet amyloid. Twenty of 26 diabetic subjects (77%) had islet amyloid, compared with one of 14 non-diabetic subjects (7%). Twelve of the diabetic subjects (46%) had amyloid in more than 10% of their islets, whereas only 4% of islets were affected in a single non-diabetic subject. Positive immunoreactivity for islet amyloid peptide was present in the islet amyloid and in islet cells in 54% of the diabetic and 50% of the non-diabetic subjects. Islet amyloid in diabetic Pima Indians may indicate a primary Beta-cell defect which interacts with insulin resistance to produce diabetes, or may develop as a result of Beta-cell dysfunction induced by insulin resistance and hyperglycaemia.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0428
    Keywords: Linkage ; islet amyloid
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Type 2 (non-insulin-dependent) diabetes is associated with the deposition of islet amyloid. The major formative peptide, islet amyloid polypeptide, has recently been characterised and an abnormality of the structure or expression of this gene is a possible candidate for the inherited component of Type 2 diabetes. A restriction fragment length polymorphism of the gene has been identified with Pvu II. To study the relationship between the islet amyloid polypeptide gene and Type 2 diabetes, two distinct genetic approaches have been undertaken. Firstly, non-linkage has been demonstrated in four pedigrees, with four normoglycaemic first degree relatives having an allele associated with diabetes in other family members, and one affected relative not having the putatively associated allele. The LOD score taking age-related penetrance into account was −1.68, making linkage unlikely (p=0.02). Secondly, in a population-based restriction fragment length polymorphism survey, no linkage disequilibrium of the alleles was found between a population of unrelated Caucasian subjects with Type 2 diabetes and a normal population. A mutation in or near the islet amyloid polypeptide gene is thus unlikely to be a common cause of Type 2 diabetes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-0428
    Keywords: Islet amyloid polypeptide ; islet amyloid ; Type 2 (non-insulin-dependent) diabetes mellitus ; Beta cell ; pancreas
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Islet amyloid polypeptide is a normal constituent of islet Beta cells and is derived from a larger precursor by removal of flanking peptides at the carboxy (C) and amino (N) terminals. The role of these flanking peptides in the formation of amyloid in Type 2 (non-insulin-dependent) diabetes mellitus and in insulinomas is unknown. The C-terminal flanking peptide of islet amyloid polypeptide was localised by immunocytochemistry in human and monkey pancreatic islets from Type 2 diabetic and non-diabetic individuals by use of specific polyclonal antisera. Immunoreactivity for the C-terminal peptide was found in insulincontaining cells in both diabetic and non-diabetic tissue: no antibody binding was detected in islet amyloid of Type 2 diabetic man or of monkeys although a positive reaction occurred with antisera for islet amyloid polypeptide. The C-terminal peptide was localised by immunogold electron microscopy in the insulin granules in both diabetic and nondiabetic individuals but, unlike islet amyloid polypeptide, was not detected in lysosomes. The absence of immunoreactivity for the C-terminal peptide in amyloid suggests that incomplete cleavage of this flanking peptide from islet amyloid polypeptide is not a factor in the formation of islet amyloid.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-0428
    Keywords: Islet amyloid polypeptide ; amylin ; transgenic mouse ; islet beta cell ; islet amyloid ; glucose metabolism ; insulin resistance ; Type 2 (non-insulin-dependent) diabetes mellitus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Type 2 (non-insulin-dependent) diabetes mellitus is characterised by hyperglycaemia, peripheral insulin resistance, impaired insulin secretion and pancreatic islet amyloid formation. The major constituent of islet amyloid is islet amyloid polypeptide (amylin). Islet amyloid polypeptide is synthesized by islet beta cells and co-secreted with insulin. The ability of islet amyloid polypeptide to form amyloid fibrils is related to its species-specific amino acid sequence. Islet amyloid associated with diabetes is only found in man, monkeys, cats and racoons. Pharmacological doses of islet amyloid polypeptide have been shown to inhibit insulin secretion as well as insulin action on peripheral tissues (insulin resistance). To examine the role of islet amyloid polypeptide in the pathogenesis of Type 2 diabetes, we have generated transgenic mice with the gene encoding either human islet amyloid polypeptide (which can form amyloid) or rat islet amyloid polypeptide, under control of an insulin promoter. Transgenic islet amyloid polypeptide mRNA was detected in the pancreas in all transgenic mice. Plasma islet amyloid polypeptide levels were significantly elevated (up to 15-fold) in three out of five transgenic lines, but elevated glucose levels, hyperinsulinaemia and obesity were not observed. This suggests that insulin resistance is not induced by chronic hypersecretion of islet amyloid polypeptide. Islet amyloid polypeptide immunoreactivity was localized to beta-cell secretory granules in all mice. Islet amyloid polypeptide immunoreactivity in beta-cell lysosomes was seen only in mice with the human islet amyloid polypeptide gene, as in human beta cells, and might represent an initial step in intracellular formation of amyloid fibrils. These transgenic mice provide a unique model with which to examine the physiological function of islet amyloid polypeptide and to study intracellular and extracellular handling of human islet amyloid polypeptide in pancreatic islets.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-0428
    Keywords: Type 2 (non-insulin-dependent) diabetes mellitus ; Macaca mulatta ; islet of Langerhans — pathology ; amyloid ; islet amyloid polypeptide ; beta cells ; obesity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Diabetes mellitus in Macaca mulatta rhesus monkeys is preceded by phases of obesity and hyperinsulinaemia and is similar to Type 2 (non-insulin-dependent) diabetes mellitus in man. To relate the progression of the disease to quantitative changes in islet morphology, post-mortem pancreatic tissue from 26 monkeys was examined. Four groups of animals were studied: group I — young, lean and normal (n=3); group II — older (〉10 years), lean and obese, normoglycaemic (n=9); group III — normoglycaemic and hyperinsulinaemic (n=6); group IV — diabetic (n=8). Areas of islet amyloid, beta cells and islets were measured on stained histological sections. Islet size was larger in animals from groups III (p〈0.01) and IV (p〈0.0001) compared to groups I and II. The mean beta-cell area per islet in Μm2 was increased in group III (p〈0.05) and reduced in group IV (p〈0.001) compared to groups I and II. Mean beta-cell area per islet correlated with fasting plasma insulin (r=0.76, p〈0.001) suggesting that hyper- and hypoinsulinaemia are related to the beta-cell population. Amyloid was absent in group I but small deposits were present in three of nine (group II) and in four of six (group III) animals, occupying between 0.03–45% of the islet space. Amyloid was present in eight of eight diabetic animals (group IV) occupying between 37–81% of the islet area. Every islet was affected in seven of eight diabetic monkeys. There was no correlation of degree of amyloidosis with age, body weight, body fat proportion or fasting insulin. Islet amyloid appears to precede the development of overt diabetes in Macaca mulatta and is likely to be a factor in the destruction of islet cells and onset of hyperglycaemia.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...