Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Electronic Resource  (2)
  • aerosol particles  (1)
  • cloud microphysics  (1)
  • 1
    ISSN: 1573-0662
    Keywords: Cloud model ; airflow model ; cloud chemistry ; cloud microphysics ; aerosols ; Henry's Law ; nitric acid ; cloud-water acidity ; turbulence ; mixing ; scavenging ; Kleiner Feldberg ; GCE
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract The airflow, cloud microphysics and gas- and aqueous-phase chemistry on Kleiner Feldberg have been modelled for the case study of the evening of 1 November 1990, in order to calculate parameters that are not easily measured in the cloud and thus to aid the interpretation of the GCE experimental data-set. An airflow model has been used to produce the updraught over complex terrain for the cloud model, with some care required to ensure realistic modelling of the strong stable stratification of the atmosphere. An extensive set of measurements has been made self-consistent and used to calculate gas and aerosol input parameters for the model. A typical run of the cloud model has calculated a peak supersaturation of 0.55% which occurs about 20 s after entering cloud where the updraught is 0.6 m s−1. This figure has been used to calculate the efficiency with which aerosol particles were scavenged; it is higher than that calculated by other methods, and produces a cloud with slightly too many droplets. A broad cloud droplet size spectrum has been produced by varying the model inputs to simulate turbulent mixing and fluctuations in cloud parameters in space and time, and the ability of mixing processes near cloud-base to produce a lower peak supersaturation is discussed. The scavenging of soluble gases by cloud droplets has been observed and departures from Henry's Law in bulk cloud-water samples seen to be caused by variation of pH across the droplet spectrum and the inability of diffusion to adjust initial distributions of highly soluble substances across the spectrum in the time available. Aqueous-phase chemistry has been found to play a minor role in the cloud as modelled, but circumstances in which these processes would be more important are identified.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-0662
    Keywords: Partitioning ; aerosol particles ; cloud ; scavenging ; CVI
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract The partitioning of aerosol particles between cloud droplets and interstitial air by number and volume was determined both in terms of an integral value and as a function of size for clouds on Mt. Kleiner Feldberg (825 m asl), in the Taunus Mountains north-west of Frankfurt am Main, Germany. Differences in the integral values and the size dependent partitioning between two periods during the campaign were observed. Higher number and volume concentrations of aerosol particles in the accumulation mode were observed during Period II compared to Period I. In Period I on average 87±11% (±one standard deviation) and 73±7% of the accumulation mode volume and number were incorporated into cloud droplets. For Period II the corresponding fractions were 42±6% and 12±2% in one cloud event and 64±4% and 18±2% in another cloud event. The size dependent partitioning as a function of time was studied in Period II and found to have little variation. The major processes influencing the partitioning were found to be nucleation scavenging and entrainment.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...