Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Electronic Resource  (5)
  • pattern recognition  (3)
  • continuous culture  (2)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Cytotechnology 31 (1999), S. 243-254 
    ISSN: 1573-0778
    Keywords: continuous culture ; growth inhibition ; osmolality ; perfusion culture
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract Continuous culture is frequently used in the cultivation of mammalian cells for the manufacturing of recombinant protein pharmaceuticals. In such operations a large volume of medium is turned over each day, especially in the case where cell recycle, or perfusion cultivation, is practiced. In principle, the volumetric throughput of medium can be reduced by using a more concentrated feed while maintaining the same nutrient provision rate. Overall, the medium components are divided into two categories: ‘consumable nutrients' and ‘unconsumable inorganic bulk salts’. In such fortified medium, the concentrations of consumable nutrients, but not bulk salts, are increased. With a stoichiometrically-balanced medium, the large amount of nutrients fed into the culture is largely consumed by cells to give rise to residual concentrations of these nutrients in their optimal range. However, unless care is taken to initiate the continuous culture, overshoot of nutrients may occur during the transient period. The high nutrient concentration during overshoot may be inhibitory by itself, or the resulting high osmolality may retard the growth. Using a mathematical model that incorporates the growth inhibitory effect of high osmolality we demonstrate such a potentially catastrophic effect of nutrient and osmolality overshoot by simulation. To avoid overshoot a controlled nutrient feeding scheme should be devised at the initiation of continuous culture.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Plant cell, tissue and organ culture 56 (1999), S. 25-35 
    ISSN: 1573-5044
    Keywords: Douglas fir ; image analysis ; neural network ; pattern recognition ; somatic embryogenesis ; Pseudotsuga menziesii
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A pattern recognition system was developed to classify Douglas fir somatic embryos by employing an image analysis system and two neural network based classifiers. The contour of embryo images was segmented, digitalized and converted to numerical values after the discrete and fast Fourier transformation. These values, or Fourier features, along with some other shape factors, were used for embryo classification. The pattern recognition system used a hierarchical decision tree to classify Douglas fir embryos into three normal and one abnormal embryo classes. An accuracy of greater than 80% was achieved for normal embryos. This system provides an objective and efficient method of classifying embryos of Douglas fir. It will be a useful tool for kinetic studies and process optimization of conifer somatic embryogenesis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 38 (1991), S. 1020-1028 
    ISSN: 0006-3592
    Keywords: hybridoma ; cell culture ; continuous culture ; kinetics ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A hybridoma cell line, AFP-27-P, was cultivated in continuous culture under glucose-limited conditions. The viable cell concentration, dead-cell concentration, and cell volume all varied with the dilution rate. A model previously developed for a nonproducing clone of the same cell line, AFP-27-NP, was extended to describe the behavior of the cells. The relationship between the specific growth rate and glucose concentration is described by a function similar to the Monod model. A threshold glucose concentration and a minimum specific growth rate are incorporated; the model is meaningful only at glucose concentration and a minimum specific growth rate are incorporated; the model is meaningful only at glucose concentrations and specific growth rates above these levels. The relationship between the death rate and the glucose concentration is described by an inverted Monod-type function. Furthermore, the yield coefficient based on glucose is constant in the lower range of specific growth rates and changes to a new constant value in the upper range of specific growth rates. No maintenance term for glucose consumption is used; in the plot of specific glucose consumption rate vs. specific growth rate, the line intercepts the specific growth rate at a value close to the minimum growth rate. The productivity of antibody as a function of the specific growth rate is described by a mixed type model with a noon-growth-associated term and a negative-growth-associated term. The values for the model parameters were determined from regression analysis of the steady state data.
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 44 (1994), S. 368-378 
    ISSN: 0006-3592
    Keywords: Daucus carota L. ; embryos ; kinetics ; morphology ; pattern recognition ; image analysis ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The environmental effects on developing somatic embryos should be characterized not only by the growth based on biomass, but also by the morphological properties and size. We have previously developed a discrete classifier to separate developing embryos into distinct morphological classes. In this study, a continuous descriptor using the distributions of magnitude of features representing morphological characteristics and size information was used to describe the developing embryo populations. The identity of the population was examined by comparing either the distributions of all features or key features. The method was applied to characterize the kinetics of carrot embryo populations cultivated in the presence and absence of triiodobenzoic acid(TIBA), an inhibitor of auxin polar transport. Optimal sample size for morphological characterization was determined by the invariance of feature distributions with further increase in sample size. The overall growth and substrate consumption kinetics were only slightly affected by the presence of TIBA. However, the distribution of morphological features was significantly affected. The features showing the highest statistical significance were related to those corresponding to the roughness. The continuous descriptor for characterizing developing embryo population is potentially useful for quality control in large-scale operations. © 1994 John Wiley & Sons, Inc.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 50 (1996), S. 65-72 
    ISSN: 0006-3592
    Keywords: somatic embryo ; plant cell culture ; image analysis ; pattern recognition ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Somatic embryogenesis is among the most promising means of large scale plant micropropagation. The development of somatic embryos is characterized by their morphological changes. Embryos in culture usually exhibit high heterogeneity and abnormality. As conventional microscopic observation is laborious and subjective, an objective and quantitative morphokinetic description is important for further advancement of this important process technology. We developed an image analysis system capable of measuring morphological and size features of embryos. Subtle environmental effects on embryo development, which are often masked by the subjectivity of microscopic observation, are now discernible by statistically comparing the distributions of these morphological and size features. This image analysis and pattern recognition system was applied to examine the kinetics of a fed-batch culture. © 1996 John Wiley & Sons, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...