Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Electronic Resource  (3)
  • denaturation  (2)
  • controlled release  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Pharmaceutical research 15 (1998), S. 188-193 
    ISSN: 1573-904X
    Keywords: ion pairing ; ionic detergents ; solubility ; controlled release ; proteins
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract The high aqueous solubility of ionic compounds can be attributed to the ease of solvation of the counter ions. Replacement of the counter ions with ionic detergents dramatically alters the solubility properties of the molecule. Not only does the aqueous solubility drop precipitously, but the solubility in organic phases increases as well. Consequently, the partition coefficient changes by orders of magnitude. This ion pairing phenomenon, which we term hydrophobic ion pairing (HIP), has been extended to polyelectrolytes, such as proteins and polynucleotides. These materials form HIP complexes that dissolve in a range of organic solvents, often with retention of native structure and enzymatic activity. The HIP process has been used to purify protein mixtures, conduct enzymatic reactions in nonaqueous environments, increase structural stability, enhance bioavailability, and prepare new dosage forms.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Pharmaceutical research 6 (1989), S. 903-918 
    ISSN: 1573-904X
    Keywords: protein stability ; biotechnology ; mutagenesis ; denaturation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract Recombinant DNA technology has now made it possible to produce proteins for pharmaceutical applications. Consequently, proteins produced via biotechnology now comprise a significant portion of the drugs currently under development. Isolation, purification, formulation, and delivery of proteins represent significant challenges to pharmaceutical scientists, as proteins possess unique chemical and physical properties. These properties pose difficult stability problems. A summary of both chemical and physical decomposition pathways for proteins is given. Chemical instability can include proteolysis, deamidation, oxidation, racemization, and β-elimination. Physical instability refers to processes such as aggregation, precipitation, denaturation, and adsorption to surfaces. Current methodology to stabilize proteins is presented, including additives, excipients, chemical modification, and the use of site-directed mutagenesis to produce a more stable protein species.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 0006-3592
    Keywords: protein stabilization ; urokinase ; denaturation ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Stabilization of proteins through proper formulation is an important challenge for the pharmaceutical industry. Two approaches for stabilization of proteins in solution are discussed. First, work describing the effect of additives on the thermally induced denaturation and aggregation of low molecular weight urokinase is presented. The effects of these additives can be explained by preferential exclusion of the solute from the protein, leading to increased thermal stability with respect to denaturation. Diminished denaturation leads to reduced levels of aggregation. The second approach involves stoichiometric replacement of polar counter ions (e.g., chloride, acetate, etc.) with anionic detergents, in a process termed hydrophobic ion pairing (HIP). The HIP complexes of proteins have increased solubility in organic solvents. In these organic solvents, where the water content is limited, the thermal denautration temperatures greatly exceed those observed in aqueous solution. In addition, it is possible to use HIP to selectively precipitate basic proteins from formulations that contain large amounts of stabilizers, such as human serum albumin (HSA), with a selectivity greater than 2000-fold. This has been demonstrated for various mixtures of HSA and interleukin-4. © 1995 John Wiley & Sons, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...