Library

Language
Preferred search index
Number of Hits per Page
Default Sort Criterion
Default Sort Ordering
Size of Search History
Default Email Address
Default Export Format
Default Export Encoding
Facet list arrangement
Maximum number of values per filter
Auto Completion
Feed Format
Maximum Number of Items per Feed
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Electronic Resource  (1)
  • metabolic controls  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of bioenergetics and biomembranes 13 (1981), S. 317-355 
    ISSN: 1573-6881
    Keywords: Kinetic models ; adenylate cyclase ; metal regulation ; brain function ; ionic equilibria ; metabolic controls ; calcium regulation ; magnesium regulation ; manganese regulation ; nucleotide regulation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Physics
    Notes: Abstract Multiple-equilibrium equations were solved to investigate the individual and separate effects of Mg2+, Mn2+, Ca2+, ATP4−, and their complexes on the kinetics of brain adenylate cyclase. The effects of divalent metals and/or ATP4− (in excess of their participation in complex formation) were determined and, from the corresponding apparent affinity values, the following kinetic constants were obtained:K m(MgATP)=1.0 mM,K i(ATP4−)=0.27 mM,K m(MnATP)=0.07 mM, andK i(CaATP)=0.015 mM. MgATP, MnATP, ATP4−, and CaATP were shown to compete for the active site of the enzyme. Hence, it is proposed that endogenous metabolites with a strong ligand activity for divalent metals, such as citrate and some amino acids, become integrated into a metabolite feedback control of the enzyme through the release of ATP4− from MgATP. Ca2+ fluxes may participate in the endogenous regulation of adenylate cyclase by modifying the level of CaATP. The free divalent metals show an order of affinityK 0.5(Ca2+)=0.02 mM,K 0.5(Mn2+)=3.8 mM,K 0.5(Mg2+)=4.7 mM, and an order of activity Mn2+〉Mg2+〉Ca2+. The data indicate that Mn2+ and Mg2+ ions may compete for a regulatory site distinct from the active site and increaseV m without changingK m(MgATP),K m(MnATP), orK i(ATP4−). The interactions of ATP4− and CaATP, which act as competitive inhibitors of the reaction of the enzyme with the substrates MgATP and MnATP, and Mg2+ and Mn2+, which act as activators of the enzyme in the absence of hormones, are shown to follow the random rapid equilibrium BiBi group-transfer mechanism of Cleland with the stipulation that neither Mg2+ nor Mn2+, in excess of their respective participation in substrate formation, are obligatorily required for basal activity. ATP4− and CaATP are involved in dead-end inhibition. For MgCl2 saturation curves at constant total ATP concentration, the computer-generated curves based on the RARE BiBi model predict a change in the Hill cooperativityh from a basal value of 2.6, when Mg2+ is not obligatorily required, to 4.0 when the addition of hormones or neurotransmitters induces an obligatory requirement for Mg2+.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...