Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Electronic Resource  (1)
  • protein synthesis regulation  (1)
Material
  • Electronic Resource  (1)
Years
Keywords
  • 1
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    Developmental Genetics 14 (1993), S. 412-423 
    ISSN: 0192-253X
    Keywords: Sea urchin ; fertilization ; eIF-4α ; protein synthesis regulation ; Life and Medical Sciences ; Genetics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: The developmentally regulated inhibitor of eIF-4 function found in unfertilized sea urchin eggs has been partially purified and its mechanism of action studied in vitro using purified recombinant eIF-4α and cell-free translation systems. The results demonstrate that although the phosphorylation of eIF-4α is necessary to promote protein synthesis, it is not sufficient to maintain all aspects of eIF-4 function. The egg inhibitor does not change eIF-4α phosphorylation state. During the blockage of initiation caused by the egg inhibitor, eIF-4α remains phosphorylated but accumulates in a 48S initiation intermediate. This suggests that the egg inhibitor functions by preventing the release of eIF-4α from the small ribosomal subunit. The characteristics of the inhibitor in a reticulocyte translation system demonstrate that eIF-4 activity is inhibited within 3-6 min. However, the inhibitor's characteristics in a mRNA-dependent translation system contrast with this. Preincubation with the inhibitor for 5-25 min prior to the addition of mRNA does not prevent endogenous eIF-4 from participating in translation but diminishes its ability to be reutilized, consistent with the accumulation of eIF-4α on the small ribosomal subunit. The ribosomal localization of the inhibitor suggests that it could prevent eIF-4α release by direct binding. The gradual inactivation of the inhibitor following fertilization indicates that it represents a component of a novel regulatory cascade that modulates eIF-4 activity. © 1993 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...