Bibliothek

Sprache
Bevorzugter Suchindex
Ergebnisse pro Seite
Sortieren nach
Sortierung
Anzahl gespeicherter Suchen in der Suchhistorie
E-Mail-Adresse
Voreingestelltes Exportformat
Voreingestellte Zeichencodierung für Export
Anordnung der Filter
Maximale Anzahl angezeigter Filter
Autovervollständigung
Feed-Format
Anzahl der Ergebnisse pro Feed
feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Digitale Medien  (2)
Materialart
  • Digitale Medien  (2)
Erscheinungszeitraum
  • 1
    ISSN: 1432-072X
    Schlagwort(e): Bacillus megaterium ; Xylose ; Regulatory gene (xylR)
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie
    Notizen: Abstract The xylA and xylB genes of Bacillus subtilis BR151 encoding xylose isomerase and xylulokinase, respectively, were disrupted by gene replacement rendering the constructed mutant strain unable to grow on xylose as the sole carbon source. The Bacillus megaterium encoded xyl genes were cloned by complementation of this strain to xylose utilization. The nucleotide sequence of about 4 kbp of the insertion indicates the presence of the xylA and xylB genes on the complementing plasmid. Furthermore, a regulatory gene, xylR, is located upstream of xylA and has opposite polarity to it. The intergenic region between the divergently oriented reading frames of xylR and xylA contains palindromic sequences of 24 bp spaced by five central bp and 29 bp spaced by 11 bp, respectively, and two promoters with opposite orientation as determined by primer extension analysis. They overlap with one nucleotide of their — 35 consensus boxes. Transcriptional fusions of lacZ to xylA, xylB and xylR were constructed and revealed that xylA and xylB are repressed in the absence and can be 200-fold induced in the presence of xylose. The increased level of xylAB mRNA in induced and its absence in repressed cells confirms that this regulation occurs on the level of transcription. Deletion of the xylR gene encoding the Xyl repressor results in constitutive expression of xylAB. The transcription of xylR is autoregulated and can be induced 9-fold by xylose. The mechanism of this regulation is not clear. While the apparent xyl operator palindrome is upstream of the xylR promoter, the potential recognition of another palindrome downstream of this promoter by Xyl repressor is discussed.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    ISSN: 1432-072X
    Schlagwort(e): Bacillus licheniformis ; Xylose ; Regulatory sequence
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie
    Notizen: Abstract In this article we describe the cloning of the xyl regulon encoding xylose utilization from Bacillus licheniformis by complementation of a xyl mutant of B. subtilis. The xylose isomerase encoding gene, xylA, was sequenced and identified by its extensive homology to other xylose isomerases. The expression of xylA is regulated on the level of transcription by a repressor protein encoded by xylR. Its gene has the opposite orientation of xylA and the start codons are 181 bp apart. A deletion of xylR renders xylA expression constitutive. The xylR sequence was determined and is discussed with respect to its homology to other xylR structures. Primer extension analyses of the xylA and xylR transcripts under repressing and incuding conditions define their promoters and confirm the regulation of xylA transcription. Furthermore, some induction of the xylR transcript by xylose is also observed. The regulatory sequence of both genes consists of a bipolar promoter system and contains three palindromic sequence elements. Their potential functions with respect to xylA and xylR regulation are discussed. The primary structures of the genes, promoters and regulatory sequences are compared to the xyl regulons encoded by B. subtilis, B. megaterium, Staphylococcus xylosus and E. coli. Homology is greatest between the B. subtilis and B. megaterium encoded xyl genes while the B. licheniformis borne genes are clearly more distant. The next greater differences are found to the S. xylosus and the greatest to the E. coli encoded genes. These results are discussed with respect to the taxonomic relations of these bacteria.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...