Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Electronic Resource  (7)
Material
  • Electronic Resource  (7)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of materials science 12 (1993), S. 1206-1207 
    ISSN: 1573-4811
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Journal of materials science 15 (1996), S. 1129-1131 
    ISSN: 1573-4811
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Journal of materials science 30 (1995), S. 3893-3896 
    ISSN: 1573-4803
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The fabrication of thick optical films by spinning from solution on silicon substrates is an important technique for integrated optics applications. In particular, several authors have studied the conditions under which the thickness of sol-gel silica films deposited on silicon wafers from solutions of water, tetraethoxysilane (TEOS) and ethanol can be maximized. The influence of processing parameters, such as composition, ageing period of the solution and spinning rate, have been studied. The effect of the wettability of the silicon substrate on the film thickness was investigated. The wetting characteristics of the silicon surface may be changed by adequate chemical cleaning methods. The hydrophilic wafers obtained by controlled oxidation of the silicon were found to have greater affinity to the film forming solution and to lead to thicker films than hydrophobic wafers obtained by etching the silicon surface with HF solution.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 32 (1986), S. 6073-6094 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The phase behavior of blends of various polyacrylate homopolymers and two commercial ethyl acrylate (EA) and n-butyl acrylate (nBA) copolymers with polyepichlorohydrin (PECH), poly(ethylene oxide) (PEO), and a copolymer of epichlorohydrin and ethylene oxide [P(ECH/EO)] was examined using differential scanning calorimetry and optical indications of phase separation on heating, i.e., lower critical solution temperature (LCST) behavior. Poly(methylacrylate) (PMA) was shown to be miscible with PECH, PEO, and P(ECH/EO) while only PECH was found to be miscible with the higher polyacrylates: poly(ethyl acrylate), EA copolymer, poly(n-propyl acrylate), and nBA copolymer. However, even PECH was found to be only partially miscible with poly(n-butyl acrylate). In general, glass transitions observed by DSC for blends were not as broad as those found in corresponding polymethacrylate blends. All mixtures showed LCST behavior, and, based on this and excess volume measurements, to the extent possible, qualitative conclusions were made concerning the relative strength of the interactions among the various blend pairs. For PECH it appears that the interaction with polyacrylates decreases with increasing size of the alkyl group. The commercial copolymers seem to interact more exothermically with PECH than the corresponding homopolymers. The interaction with PMA is apparently larger for PECH than for PEO or for P(ECH/EO). Interactions for the latter two are about the same. The apparently exothermic interactions between ECH and EO units are not sufficiently strong to preclude miscibility of P(ECH/EO) with PMA. As for the polymethacrylates, it is clear that the chlorine moeity of PECH is needed for miscibility with higher polyacrylates.
    Additional Material: 26 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 29 (1984), S. 1971-1983 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Based on the behavior of the glass transition for blends of polyepichlorohydrin with various aliphatic polyesters, miscible amorphous phases are formed in all cases when the ratio of aliphatic carbons to ester groups in the repeat unit is less than 10 but more than 2. This observation includes selected polyesters with branched and saturated cyclic units in their structure. Interaction parameters deduced from polyester melting point depression were all negative and showed a minimum within this range of polyester molecular structures. The composition dependence of the observed glass transitions was found to be severely influenced by the presence of polyester crystallinity in the blend when heated through the transition region.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 32 (1986), S. 5357-5371 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The phase behavior of binary mixtures of copolymers containing varying amounts of styrene and acrylonitrile (SAN) with a large range of aliphatic polyesters was examined. Miscibility was observed over a limited range of AN contents of the SANs, for each polyester, while similarly for each SAN, miscibility was only observed over a limited range of polyester molecular structures. Thermodynamic interaction parameters for the miscible blends were obtained by analysis of the depression of the polyester melting point. A binary interaction model was used to correlate the data and six group interaction parameters were deduced by subdividing the polyester and SAN copolymer repeating units in three different ways. It is concluded that there is a strong repulsion between the segmental units within the polyesters and within the SAN copolymers, which is an important factor in the observed phase behavior.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 32 (1986), S. 5481-5508 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The phase behavior of blends of various polymethacrylates with poly(epichlorohydrin) (PECH); poly(ethylene oxide) (PEO); and a copolymer of epichlorohydrin and ethylene oxide [P(ECH/EO)], was examined using differential scanning calorimetery (DSC), dynamic mechanical properties, and optical indications of phase separation on heating, namely lower critical solution temperature (LCST) behavior. Poly(methyl methacrylate) (PMMA), was shown to be miscible with PECH, PEO, and P(ECH/EO), while only PECH was found miscible with the higher polymethacrylates: poly(ethyl methacrylate), poly(n-propyl methacrylate), poly(n-butyl methacrylate), and poly(cyclohexyl methacrylate). However, even PECH was found to be only partially miscible with poly(isopropyl methacrylate). In many cases, unusually broad glass transitions were observed by DSC for blends which are believed to be the result of equilibrium composition fluctuations. All mixtures showed LCST behavior and based on this and excess volume measurements, to the extent possible, qualitative conclusions were made concerning the relative strength of the interactions among the various blend pairs. For PECH, it appears that the interaction with polymethacrylates decreases with increasing size of the alkyl pendant group, with poly(cyclohexyl methacrylate) being a possible exception. The interaction with PMMA is apparently about the same for PECH and PEO, but somewhat less for P(ECH/EO). The latter is consistent with an intrachain attraction of ECH and EO believed to exist. The reasons for similar interactions of PEO and PECH with PMMA are not understood; however, it is clear that the chlorine moiety of PECH is needed for miscibility with higher polymethacrylates.
    Additional Material: 29 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...