Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Biochemical genetics 35 (1997), S. 189-204 
    ISSN: 1573-4927
    Keywords: somaclonal variation ; tissue culture ; isozymes ; cactus ; genetic diversity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract Morphological and isozyme variation was observed among plants regenerated from callus cultures of Cereus peruvianus. Different morphological types of shoots (68%) were observed in 4-year-old regenerated plants, while no distinct morphological variants were observed in plants grown from germinated seeds. Isozyme patterns of 633 plants regenerated from calli and of 261 plants grown from germinated seeds showed no variation in isocitrate dehydrogenase isozyme, and the differential sorbitol dehydrogenase, alcohol dehydrogenase, malate dehydrogenase, acid phosphatase, and peroxidase isozyme patterns observed in regenerated plants were attributed to nonallelic variation. Allelic variation was detected at three isoesterase loci. The proportion of polymorphic loci for both populations was 13.6% and the deviation from Hardy–Weinberg equilibrium for the Est-1 and Est-7 loci observed in somaclones was attributed to the manner in which the regenerant population was established. The high values for genetic identity among regenerant and seed-grown plant populations are in accordance with the low levels of interpopulation genetic divergence. In somaclones of C. peruvianus, morphological divergence was achieved within a short time but was not associated with any isozyme changes and also was not accompanied by biochemical genetic divergence.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-4927
    Keywords: malate dehydrogenase ; cactaceae ; callus culture ; isozymes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract Malate dehydrogenase (MDH; EC 1.1.1.37) isozymes were investigated in seeds and in seedlings and calli cultures ofC. peruvianus to determine if the changes in MDH isozyme banding patterns could be used as biochemical markers to identify the origin of regenerated plants from callus tissues. Four cytoplasmic MDH isozymes (sMDH), five mitochondrial MDH isozymes (mMDH), and one glyoxysomal MDH isozyme (gMDH) were detected and showed tissue- and stage-specific expression. A relationship of mMDH and gMDH isozyme patterns with callus tissues subcultured in three hormonal combinations and with the plants regenerated from these callus tissues was demonstrated. Furthermore, temperature and mechanical stress were found to be closely related to mMDH-1 activity in callus culture. Therefore, the different patterns of MDH isozymes in the various tissues ofC. peruvianus can be used as biochemical markers for the study of gene expression during development and as powerful tools in monitoring studies on callus cultures.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-4927
    Keywords: isozymes ; callus cultures ; cactaceae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract Electrophoretic patterns for isocitrate dehydrogenase (IDH; EC 1.1.1.42), acid phosphatase (ACP; EC 3.1.3.2), peroxidase (PER; EC 1.11.1.7), and esterase (EST; EC 3.1.1.1) isozymes were determined inCereus peruvianus tissues and used as markers of genetic uniformity of calli and of the plants regenerated from callus cultures. One IDH, six ACP, six PER, and six EST isozymes were induced in cultured callus tissues in medium containing three 2,4-dichlorophenoxyacetic acid and kinetin combinations. Four ACP, two PER, and three EST isozymes were still present in all regenerated plantsin vitro and therefore can be used as markers of theC. peruvianus plants regenerated from callus tissues. The differential patterns of ACP and IDH isozymes and the similar zymograms for PER and EST isozymes presented by callus tissues were used in a comparison of callus tissues cultured for 2 years. The comparative analysis of zymograms within each enzyme system indicated a mean heterogeneity coefficient of 0.33 forC. peruvianus calli cultured for 2 years. Because of the isozyme variations, which developed in culture medium and were transferred to the regenerated plants, the IDH, ACP, PER, and EST enzyme systems can be considered to be good markers for investigating possible genetic variations in plant populations ofC. peruvianus obtainedin vitro from callus culture.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1573-4927
    Keywords: malate dehydrogenase ; cactaceae ; callus culture ; isozymes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract Malate dehydrogenase (MDH; EC 1.1.1.37) isozymes were investigated in seeds and in seedlings and calli cultures ofC. peruvianus to determine if the changes in MDH isozyme banding patterns could be used as biochemical markers to identify the origin of regenerated plants from callus tissues. Four cytoplasmic MDH isozymes (sMDH), five mitochondrial MDH isozymes (mMDH), and one glyoxysomal MDH isozyme (gMDH) were detected and showed tissue- and stage-specific expression. A relationship of mMDH and gMDH isozyme patterns with callus tissues subcultured in three hormonal combinations and with the plants regenerated from these callus tissues was demonstrated. Furthermore, temperature and mechanical stress were found to be closely related to mMDH-1 activity in callus culture. Therefore, the different patterns of MDH isozymes in the various tissues ofC. peruvianus can be used as biochemical markers for the study of gene expression during development and as powerful tools in monitoring studies on callus cultures.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1573-4927
    Keywords: alcohol dehydrogenase ; mitochondrial malate dehydrogenase ; Cereus peruvianus ; callus tissue ; kinetin
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract Alcohol dehydrogenase (ADH) and mitochondrial malate dehydrogenase (mMDH) isozymes were tested as markers to study the effect of a high kinetin concentration on isozyme phenotypes and on the development ofCereus peruvianus callus tissue culture. Three-year-old callus tissues were used as samples. Callus tissue samples grown on 4.0 mg/L 2,4-dichlorophenoxyacetic acid (2,4-D) and on 4.0 and 8.0 mg/LN-(2-furanylmethyl)-1H-purine-6 amine (kinetin) were cut and transferred to fresh medium containing 4.0 mg/L 2,4-D and 4.0, 8.0, 16.0, and 32 mg/L kinetin combinations. The pattern of changes observed in the ADH and mMDH isozymes as well as the growth of callus tissues was independent of the concentrations tested. The various ADH and mMDH isozymes seem to be products of differential association of subunits of the twoAdh and twomMdh genes. Both genes are active throughout callus tissue development; however, gene expression changed with various callus culture conditions. This study addresses how long-term callus culture conditions affect constitutive and differential gene expression of theAdh andmMdh genes inC. peruvianus.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1573-4927
    Keywords: alcohol dehydrogenase ; isozymes ; callus cultures ; cactaceae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract Alcohol dehydrogenase (ADH; EC 1.1.1.1) isozymes were investigated in tissue ofCereus peruvianus cultured in different concentrations of 2,4-dichlorophenoxyacetic acid (2,4-D) and kinetin. Five ADH isozymes were detected in starch gel and showed different patterns in seeds, seedlings, calli cultured at 32 and 22°C, and plants regenerated from calli cultured in three 2,4-D and kinetin combinations. Four phenotypes formed by different combinations of ADH-2, ADH-3, ADH-4, and ADH-5 were detected in calli cultured at 32°C and in plants regenerated from calli. ADH-1 isozyme was detected only in calli subcultured for 1 or 2 weeks at 22°C and was indicated as a marker of stress conditions that affect the growth ofC. peruvianus callus tissues in culture. ADH phenotypes with either a higher or a lower number of isozymes were detected in different proportions in the callus tissues cultured in media containing different 2,4-D and kinetin ratios. ADH isozyme patterns were found to be sensitive markers at the highest kinetin concentration or at high kinetin/2,4-D ratios. The results indicate a high correlation between the ADH isozyme patterns and the capacity for regeneration. Thus, ADH isozymes are indicated as good biochemical markers and as a powerful tool for monitoring studies ofC. peruvianus callus cultures.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...