Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 110 (1999), S. 5273-5285 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Methods of implementation of classical molecular dynamics simulations of moderate size molecule vibrational energy relaxation and analysis of their results are proposed. Two different approaches are considered. The first is concerned with modeling a real nonequilibrium cooling process for the excited molecule in a solvent initially at equilibrium. In addition to the solute total, kinetic, and potential energy evolution, that define the character of the process and the rate constant or relaxation time, a great deal of important information is provided by a normal mode specific analysis of the process. Expressions for the decay of the normal mode energies, the work done by particular modes, and the vibration–rotation interaction are presented. The second approach is based on a simulation of a solute–solvent system under equilibrium conditions. In the framework of linear nonequilibrium statistical thermodynamics and normal mode representation of the solute several expressions for the rate constant are derived. In initial form, they are represented by integrals of the time correlation functions of the capacities of the solute–solvent interaction atomic or normal mode forces and include the solute heat capacity. After some approximations, which are adequate for specific cases, these expressions are transformed to combinations of those for individual oscillators with force–force time correlation functions. As an attempt to consider a strongly nonequilibrium situation we consider a two-temperature model and discuss the reason why the rate constant can be independent on the solute energy or temperature. Expressions for investigation of the energy redistribution in the solvent are derived in two forms. One of them is given in the usual form of a heat transfer equation with the source term describing the energy flux from the excited solute. The other form describes the energy redistribution in the solvent in terms of capacity time correlation functions and can be more convenient if memory effects and spatial dispersion play an important role in energy redistribution in the solvent. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 110 (1999), S. 5286-5299 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Results of nonequilibrium molecular dynamics simulations of vibrational energy relaxation of azulene in carbon dioxide and xenon at low and high pressure are presented and analyzed. Simulated relaxation times are in good agreement with experimental data for all systems considered. The contribution of vibration–rotation coupling to vibrational energy relaxation is shown to be negligible. A normal mode analysis of solute-to-solvent energy flux reveals an important role of high-frequency modes in the process of vibrational energy relaxation. Under all thermodynamic conditions considered they take part in solvent-assisted intramolecular energy redistribution and, moreover, at high pressure they considerably contribute to azulene-to-carbon dioxide energy flux. Solvent-assisted (or collision-induced) intermode energy exchange seems to be the main channel, ensuring fast intramolecular energy redistribution. For isolated azulene intramolecular energy redistribution is characterized by time scales from several to hundreds of ps and even longer, depending on initial excitation. The major part of solute vibrational energy is transferred to the solvent via solute out-of-plane vibrational modes. In-plane vibrational modes are of minor importance in this process. However, their contribution grows with solvent density. The distribution of energy fluxes via azulene normal modes strongly depends on thermodynamic conditions. The contribution of hydrogen atoms to the overall solute-to-solvent energy flux is approximately two to three times higher than of carbon atoms depending on the system and thermodynamic conditions as well. Carbon atoms transfer energy only in the direction perpendicular to the molecular plane of azulene, whereas hydrogen atoms show more isotropic behavior, especially at high pressure. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1520-4812
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The expressions for vibrational energy relaxation (VER) rates of polyatomic molecules in terms of equilibrium capacity time correlation functions (TCFs) derived in the first paper of this series [J. Chem. Phys. 110, 5273 (1999)] are used for the investigation of VER of azulene in carbon dioxide at low (3.2 MPa) and high (270 MPa) pressure. It is shown that for both cases the VER times evaluated on the basis of the same potential model via solute–solvent interaction capacity TCFs by means of equilibrium molecular dynamics (EMD) simulations satisfactorily agree with the nonequilibrium (NEMD) molecular dynamics [J. Chem. Phys. 110, 5286 (1999)] and experimental [J. Chem. Phys. 105, 3121 (1996)] results as well. Thus it follows that these methods can complement each other in characterizing VER from different points of view. Although more computational power and refined methods of dealing with simulated data are required for EMD simulations, they allow the use of powerful tools of equilibrium statistical mechanics for investigating the relaxation process. To this end, an analysis of VER mechanisms on the basis of normal mode and atomic representations is carried out. The influence of temperature and CO2 pressure on azulene normal mode spectra and solvent assisted intermode coupling in connection with the eigenvector structure is investigated in great detail. The normal mode capacity cross-correlation matrix reveals the significance of intermode coupling, which significantly contributes to intramolecular vibrational energy redistribution (IVR). As a new concept, partial normal mode relaxation rates are introduced. It is shown that these rates demonstrate similar properties as the energy exchange rates through particular normal modes in nonequilibrium simulations. Atomic spectra and friction coefficients are characterized by a complicated frequency dependence due to contributions from many normal modes. Atomic capacity TCFs and partial relaxation rates are analyzed and reveal a similar picture to that obtained from NEMD simulations. These results show that VER and IVR cannot be separated from each other and have to be considered as mutually connected processes. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 108 (1998), S. 10152-10161 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Results from nonequilibrium molecular-dynamics simulations of collisional energy transfer from vibrationally highly excited azulene in compressed CO2 are compared with experimental results from our laboratory obtained under comparable physical conditions. As observed in the experiment, the cooling rates show a purely monoexponential decay of the excess energy. The influence of the microscopic solvent shell structure on these processes is investigated using the full three-dimensional anisotropic CO2 structure around azulene obtained from the simulation. The analysis shows that local heating effects of any kind do not play a role in our model system. Predictions of the pressure dependence of the energy transfer rates by the isolated binary collision model are compared with results from the simulations using two different definitions of the collision frequency in dense fluids. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 106 (1997), S. 7749-7755 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Molecular dynamic (MD) simulations of liquid CO2 at 250 MPa pressure and room temperature have been performed using a flexible model potential. A detailed analysis of the data reveal the full three-dimensional local structure of coordination shells that exhibit significant deviations from spherical symmetry with strong angular correlations among the molecules which form the inner coordination shell of the local liquid structure. Structures resembling T-shaped and offset-parallel CO2 dimers similar to those found in molecular beam and low temperature experiments have been identified, the T-shaped dimer having higher probability to be formed than the offset-parallel configuration. Local motion on short time scale is found to be different along three principal directions of a local coordinate frame. © 1997 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 101 (1994), S. 7566-7579 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The viscosity dependence of the photoisomerization of trans-stilbene in compressed liquid ethanol shows deviations from a simple power law description in the viscosity range from 1 to 4 mPa s. Corresponding deviations are observed in the solvents methanol, n-propanol, and n-butanol. This behavior is attributed to a competition between solvent relaxation and barrier crossing in the S1 state of trans-stilbene. The relative time scales of barrier crossing and solvent relaxation change as the pressure increases, because the dielectric relaxation rate of the solvent decreases more rapidly with increasing viscosity than the barrier crossing rate. Consequently, the reaction takes place in an increasingly retarded solvent environment which no longer relaxes completely around the changing charge distribution of the solute along its reaction path, giving rise to "dielectric friction.'' In contrast to trans-stilbene, the corresponding reaction of diphenylbutadiene in n-alkanols shows a much weaker sensitivity to solute-solvent interaction and, consequently, a simple inverse viscosity dependence of the photoisomerization rate is observed in all alkanols such as described by the Kramers–Smoluchowski theory. This significant difference is probably caused by smaller sudden polarization effects along the reaction path in diphenylbutadiene. The observed dependence of the trans-stilbene barrier crossing rate on pressure is compared either to a model with density dependent effective barrier height, or to a simple continuum model of the frequency dependence of the dielectric friction in the limit of weak coupling. Neither model works well unless a very strong viscosity dependence of the dielectric relaxation time of the solvent (τD∝η10) is employed to obtain agreement with the observed viscosity dependence of the barrier crossing rate.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 100 (1994), S. 6240-6262 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The (0,0) band of the B 4Π–X 4Σ− transition of NbO, near 6600 A(ring), has been analyzed from spectra taken at sub-Doppler resolution. The transition is notable for the great width of its Nb nuclear hyperfine structure, which is caused principally by the unpaired 5sσ electron in the ground state interacting with the large magnetic moment of the 4193Nb nucleus (I=9/2). A fit to the ground-state combination differences, including four very precise microwave lines measured by Suenram et al. [J. Mol. Spectrosc. 148, 114 (1991)], has given a comprehensive set of rotational, spin, and hyperfine parameters. Prominent among these are the third-order spin–orbit distortions of the spin-rotation interaction and the Fermi contact interaction, which are large and well determined, reflecting different degrees of spin–orbit contamination of the the 4Σ1/2− and 4Σ3/2− components of the ground state.The δ 2π B 4Π state was hard to fit, for a number of reasons. First, its spin–orbit structure is asymmetric, because of strong perturbations by a 2Π state which has been identified in this work, from among the various weak bands in the NbO spectrum near 7000 A(ring); the result is that many high order centrifugal distortion terms are needed in an effective Hamiltonian model for the rotation. Second, the hyperfine structure is perturbed, not only by this 2Π state, but by distant Σ and Δ states at higher energy. The δ 2σ* C 4Σ− state at 21 350 cm−1 appears to be one of these. The distant states generate large apparent nuclear spin-rotation interactions, both within and between the Λ components of the Π state, as a result of cross terms between matrix elements of the operators −2BJ⋅L and aI⋅L. Similar cross terms arising from the operators AL⋅S and aI⋅L produce corrections to the Fermi contact matrix elements and are responsible for the unexpected negative sign of the magnetic hyperfine parameter d. The "off-diagonal'' quadrupole parameter e2Qq2 is very large, and causes some of the higher J line shapes of the B–X system to be noticeably asymmetric at Doppler limited resolution; its value is consistent with the electron configuration of the B 4Π state being δ 2π.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 91 (2002), S. 5962-5971 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: We report breakdown strengths in a void-filled dielectric material, epoxy containing 48 vol % hollow glass microballoon filler, which is stressed with unipolar voltage pulses of the order of 10 μs duration. The microballoon voids had mean diameters of approximately 40 μm and contained SO2 gas at roughly 30% atmospheric pressure. This void-filled material displays good dielectric strength (of the order of 100 kV mm−1) under these short-pulse test conditions. Results from a variety of electrode geometries are reported, including arrangements in which the electric stress is highly nonuniform. Conventional breakdown criteria based on mean or peak electric stress do not account for these data. A statistics-based predictive breakdown model is developed, in which the dielectric is divided into independent, microballoon-sized "discharge cells" and the spontaneous discharge of a single cell is presumed to launch full breakdown of the composite. We obtain two empirical parameters, the mean and standard deviation of the spontaneous discharge field, by fitting breakdown data from two electrode geometries having roughly uniform fields but with greatly differing volumes of electrically stressed material. This model accounts for many aspects of our data, including the inherent statistical scatter and the dependence on the stressed volume, and it provides informative predictions with electrode geometries giving highly nonuniform fields. Issues related to computational spatial resolution and cutoff distance are also discussed. © 2002 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 91 (2002), S. 3205-3212 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Dielectric potting materials (encapsulants) are used to prevent air breakdown in high-voltage electrical devices. We report breakdown strengths in void-filled encapsulants, stressed with unipolar voltage pulses of the order of 10 μs duration. High strengths, on the order of 100 kV mm−1, are measured under these test conditions. The materials studied include low-density open celled gel-derived foams with cell sizes of 4 μm or less, closed celled CO2-blown polystyrene and urethane foams, and epoxies containing 48 vol % of hollow glass microballoon (GMB) fillers. These last specimens varied the void gas (N2 or SO2) and also the void diameters (tens to hundreds of μm). Our measurements are thought to be directly sensitive to the rate of field-induced ionization events in the void gas; however, the breakdown strengths of the materials tested appeared to vary in direct proportion with the conventional Paschen-law gas-discharge inception threshold, the electric stress at which gas-ionization avalanches become possible. The GMB-epoxy specimens displayed this type of dependence of breakdown strength on the void-gas density and void size, but the measurements were an order of magnitude above the conventional predictions. Small-celled foams also showed increased breakdown strengths with decreased cell size, although their irregular void geometry prevented a direct comparison with the more uniformly structured microballoon-filled encapsulants. The experimental observations are consistent with a breakdown mechanism in which the discharge of a few voids can launch a full breakdown in the composite material. © 2002 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...