Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1970-1974  (3)
  • 1974  (3)
Material
Years
  • 1970-1974  (3)
Year
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Oecologia 15 (1974), S. 33-64 
    ISSN: 1432-1939
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Description / Table of Contents: Zusammenfassung Es wurde die SO2-Resistenz von 12 Flechtenarten verschiedener Wuchsformen und Standorte untersucht. Hierzu wurden die Thalli einerseits mit SO2 begast (Konzentrationsstufen am Eingang der Begasungsküvette 0,5; 1,0; 2,0 und 4,0 mg SO2/m3 Luft) oder andererseits mit Na2S2O5-Lösungen unterschiedlicher Konzentrationen und pH-Werte behandelt. Als Vitalitätskriterium wurde der CO2-Gaswechsel der Thalli vor der SO2-Begasung, unmittelbar danach und darauffolgend in Abständen im Verlauf von mehreren Wochen mit dem Ultrarotabsorptionsschreiber verfolgt. Außerdem wurden in einigen Fällen die Chlorophyllgehalte bestimmt. 1. Bei den Begasungsexperimenten treten deutliche artspezifische Resistenzunterschiede auf. Die empfindlichsten Arten zeigen im voll hydratisierten Zustand bereits nach 14stündiger Behandlung mit 0.5 mg SO2/m3 eine Beeinflussung der Nettophotosynthese und Dunkelatmung; die Photosyntheseintensität von Labaria pulmonaria ist sogar irreversibel geschädigt. Die widerstandsfähigsten Arten überleben dagegen eine gleichlange Behandlung mit 4 mg SO2/m3 nur mit geringer oder ohne bleibende Beeinträchtigung ihres CO2-Gaswechsels. Nach ihrer Reaktion auf diese Behandlung ergibt sich folgende Abstufung der Widerstandsfähigkeit der untersuchten Arten: Xanthoria parietina (resistenteste Art), Parmelia scortea, Parmelia acetabulum, Hypogymnia physodes, Parmelia saxatilis, Platismatia glauca, Labaria pulmonaria, Parmelia stenophylla, Evernia prunastri. Die empfindlichste Art, Evernia prunastri, ist bezeichnenderweise eine Strauchflechte. Flechten mit dieser Wuchsform sind auch von Geländeuntersuchungen her als besonders empfindlich bekannt. 2. Exemplare der gleichen Art (Parmelia saxatilis, Lobaria pulmonaria) können sich entsprechend ihrer Standorte in der SO2-Resistenz unterscheiden. Morphologisch-anatomische Merkmale (Thallus-und Cortexdicke) bedingen möglicherweise diese Unterschiede. 3. Die Empfindlichkeit der Flechten gegen SO2-Begasung ist stark von ihrem Wasserzustand abhängig. Bei abnehmendem Wasserpotential vermindert sich die SO2-Aufnahme und damit die Schädigung. Ausgetrocknete Thalli überleben hohe SO2-Konzentrationen in ihrer Umgebung ohne Beeinträchtigung. 4. Auch bei der Behandlung mit Na2S2O5-Lösungen treten artspezifische Unterschiede in der Widerstandsfähigkeit der Flechten auf. Die Reihenfolge in der Abstufung der Resistenz stimmt hier jedoch nicht mit der nach SO2-Begasung überein. Irreversible Schädigungen der Photosynthese sind nicht unbedingt mit einer Zerstörung des Chlorophylls korreliert. 5. Die Schädigung der Flechten hängt bei gleicher Na2S2O5-Konzentration wesentlich vom pH-Wert des Mediums ab; bei niedrigem pH ist die Wirkung bedeutend stärker als bei hohem. Das kann bekanntermaßen dadurch gedeutet werden, daß die Konzentrationen an schädigenden Ionen im Gleichgewichtssystem der dissoziierten Lösung pH-abhängig ist. Die Ergebnisse werden in Anlehnung an das Resistenz-Konzept Levitts unter dem Gesichtspunkt diskutiert, daß die Gesamt-Resistenz der Flechten gegen SO2 im Luftraum von 2 Komponenten bestimmt wird, der „avoidance” und der „tolerance” (vgl. Abb. 15). Einerseits hängt die Widerstandsfähigkeit bei gegebener Außenkonzentration davon ab, wieviel SO2 in den Thallus aufgenommen wird, was u. a. durch die Thallusorganisation (Lebensform, Oberflächenbeschaffenheit) und durch den augenblicklichen Quellungsgrad des poikilohydren Organismus bestimmt wird. Außerdem kann die Toxizität des aufgenommenen SO2 erniedrigt werden, wobei der pH-Wert im Thallus und seine Pufferkapazität (bedingt u.a. durch Standort und Substrat) eine ausschlaggebende Rolle spielen. Neben diesen „avoidance”-Faktoren wird die Gesamtresistenz der Flechten andererseits von der plasmatischen Widerstandsfähigkeit der empfindlichen Systeme gegen das aufgenommene SO2 bestimmt („tolerance”). Auch diese durch Einwirkung der Na2S2O5-Lösungen bestimmte Resistenz ist gewissen Schwankungen, z.B. mit dem Entwicklungszustand der Flechten, unterworfen. Die Unterschiede in der Abstufung der untersuchten Arten nach Gesamt-Resistenz (SO2-Begasung) und plasmatischer Resistenz (Na2S2O5-Lösungen) zeigen die Bedeutung der „avoidance”-Komponente für die Gesamt-Resistenz der Organismen. In ökologischer Hinsicht bestätigen die Untersuchungen die hohe Empfindlichkeit von Flechten gegenüber SO2-Belastung, auch in Konzentrationen, wie sie bei tatsächlichen Immissionen auftreten können. Andererseits zeigt sich die Kompliziertheit der ökologischen Interpretation experimentall ermittelter Resistenzphänomene.
    Notes: Summary The SO2 resistance of 12 lichen species with different growth forms and taken from different sites was investigated. The thalli were either exposed to different concentrations of SO2 gas (concentration at entry into the cuvette: 0.5; 1.0; 2.0 and 4.0 mg SO2/m3 air) or treated with Na2S2O5 solutions of differing concentration and pH. As a viability criterion the CO2 exchange of the thalli was measured with an infrared gas analyzer before and immediately after SO2 exposure and subsequently at intervals of several weeks. In some cases the chlorophyll content was also determined. 1. Species-specific differences were clearly apparent in the SO2 gas-exposure experiments. The influence of SO2 on net photosynthesis and dark respiration in the most sensitive species was detectable after exposure to 0.5 mg SO2/m3 for 14 h in a fully hydrated state. The photosynthetic intensity of Lobaria pulmonaria was actually irreversibly damaged. In contrast, the most resistant species survived a treatment with 4 mg SO2/m3 for the same length of time with little or no permanent impairment of their CO2 exchange. The reaction of the lichen species investigated to the above treatment allows us to arrange them in decreasing order of resistance: Xanthoria parietina (most resistant), Parmelia scortea, Parmelia acetabulum, Hypogymnia physodes, Parmelia saxatilis, Platismatia glauca, Labaria pumonaria, Parmelia stenophylla, Evernia prunastri. The most sensitive species, Evernia prunastri, is characteristically a fruticose lichen. Lichens with this growth form are known from field studies to be especially sensitive. 2. Examples of the same species (Parmelia saxatilis, Lobaria pulmonaria) can vary in their SO2 resistance according to their growing site. Morphological and anatomical characteristics (thallus and cortex thickness) may cause these differences. 3. The sensitivity of the lichens to SO2 is closely dependent upon their moisture status. When the water potential is lowered the SO2 uptake is reduced and with it the injury. Dried thalli survive high SO2 concentrations in their surroundings without damage. 4. The treatment with Na2S2O5 solutions also brought out species-specific differences in lichen resistance. However, the sequence of decreasing resistance is not the same as that to SO2 gas treatment. Irreversible damage of photosynthesis is not necessarily correlated with destruction of chlorophyll. 5. The damage caused to the lichens by the Na2S2O5 solutions (of the same concentration) is closely dependent upon the pH of the medium. At a low pH the effect is much more pronounced than at a high pH. This can be interpreted as due to the concentration of damaging ions, which changes according to the degree of dissociation of the solution; this is pH dependent. The results are discussed on the basis of Levitt's resistance concept that the total resistance of lichens to SO2 in the air is dependent upon two components, „avoidance” and „tolerance” (see Fig. 15). Resistance to a specific SO2 concentration in the air depends upon how much SO2 is taken up by the thallus, which is conditioned among other things by thallus organization (life form, surface characteristics) and by the degree of hydration of the poikilohydric organism. The toxicity of the SO2 taken up by the lichen can also be reduced; the pH of the thallus and its buffering capacity (dependent among other things upon site and substrate) play a dominant role in this process. In addition to these „avoidance” factors the total resistance of lichens is also dependent upon the plasmatic resistance of sensitive systems to SO2 (“tolerance”). This type of resistance, due to the influence of Na2S2O5 solution, is subject to considerable deviation (for example due to the developmental state of the lichen). The differences in the sequence of resistance for the investigated lichen species in terms of total resistance (SO2 treatment) and plasmatic resistance (Na2S2O5 solution treatment) show the significance of the “avoidance” component for the total resistance of the organisms. In ecological terms the investigation supports the view that lichens are highly sensitive to SO2, even in concentrations which occur due to real immisions. The study also shows the complexity of an ecological interpretation of experimentally determined resistance phenomena.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1939
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Experiments with Prunus armeniaca were carried out under conditions of constant temperature but varying air humidity. Experiments were also contucted with a constant water vapor difference between the evaporating sites in a leaf and the air, but with varying leaf temperature. These served as a basis for predicting the daily course of total diffusion resistance under the natural climatic conditions of a desert. For the simulation, the rsults of the experiments at constant conditions with only one variable factor are fitted with empirical equations which serve as “calibration curves” to predict the change in diffusion resistance caused by a change in humidity and temperature calculated from the meteorological data of a desert day. The simulation shows that for P. armeniaca humidity and temperature are the dominating factors in controlling the daily course of diffusion resistance. For meteorologically very different days the simulation allows the increase in diffusion resistance in the morning to be predicted with an accuracy of 90%–105% as compared to directly observed measurements. In the afternoon, especially after extreme climatic conditions during the morning, the deviation between predicted and observed values of diffusion resistance may be greater, but not more than -20% to -30%. This possibly indicates the existence of an additional factor of significance which was not included in the simulation. The two peaked curves of net photosynthesis and transpiration characteristic of plants living under arid conditions can be explained in this species by the humidity-and temperature-controlled stomatal response. This stomatal regulation leads to a decreasing total daily transpirational water loss on a dry day as compared to a moist one. The significance of this controlling mechanism for the primary production and the water relations of P. armeniaca is discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-1939
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Temperature dependence of net photosynthesis under conditions of light saturation and maximum air humidity was measured throughout the season in the Central Negev Desert (Israel). Experimental plants were the wild growing Hammada scoparia and Prunus armeniaca cultivated in the runoff farm of Avdat. The optimum temperature for net photosynthesis and the upper temperature compensation point of CO2 exchange showed a characteristic seasonal variation with low values in spring and fall and high values in mid-summer. This shift was exhibited by plants growing under conditions of normal soil-water stress as well as by irrigated plants. There was no general correlation between the changes in temperature dependence of net photosynthesis of the plants, their maximum photosynthetic capacity under the experimental conditions, their daily photosynthesis maximum under natural conditions, and their rate of dark respiration. The seasonal shift of the photosynthetic response to temperature cannot be explained by changes in the temperature sensitivity of the stomata. It may be caused by seasonal changes of biochemical and/or biophysical properties. A number of observations made on other wild plants also showed, in all cases, seasonal shifts of the upper temperature compensation point, with an amplitude of 6.0°C–13.7°C.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...