Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • 1975-1979  (2)
  • 1978  (2)
Materialart
Erscheinungszeitraum
  • 1975-1979  (2)
Jahr
  • 1
    Digitale Medien
    Digitale Medien
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 18 (1978), S. 711-720 
    ISSN: 0032-3888
    Schlagwort(e): Chemistry ; Chemical Engineering
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Chemie und Pharmazie , Maschinenbau , Physik
    Notizen: The melting or plasticating behavior of seven commercial polymers (high density polyethylene, low density polyethylene, polypropylene, polyoxymethylene copolymer, polystyrene, poly(methyl methacrylate), and polycarbonate (PC) was investigated using an experimental apparatus specifically designed to measure the melting rate and the viscous shear stress of a solid polymer on a steel surface under precisely controlled conditions of temperature, velocity, pressure and sample width comparable to actual processing. The melting rate (per unit polymer solid/metal contact area) was found to increase with increasing temperature for all polymers except PC, to decrease with increasing sample width and to increase less than proportionally to velocity. Pressure increased the melting rate somewhat for most of the polymers. The viscous shear stress decreased with increasing temperature for all polymers except PC, decreased with increasing sample width and increased with increasing velocity. Pressure generally increased the viscous shear stress. PC showed an unusual behavior with a maximum in the melting rate near 4200°F(215.5°C) and also a maximum in the viscous shear stress near 445°F (229.4°C). The present melting model could be examined unequivocally for the first time using our experimental results. Comparison of our experimental results with the predictions of the present melting model clearly indicates the inadequacy of the present melting model, Our experimental results will provide a basis for rational development of a reliable melting model.
    Zusätzliches Material: 21 Ill.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    New York : Wiley-Blackwell
    Journal of Polymer Science: Polymer Physics Edition 16 (1978), S. 545-553 
    ISSN: 0098-1273
    Schlagwort(e): Physics ; Polymer and Materials Science
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Chemie und Pharmazie , Physik
    Notizen: Our laboratory previously reported the observation of a high temperature, melt rheological transition in a styrene-butadiene-styrene (S:7 × 103 and B:43 × 103) block copolymer from the highly elastic, nonlinear viscous behavior typical of a multiphase structure to linear viscous behavior with insignificant elasticity typical of a single-phase structure. We have investigated the precise nature of this melt rheological transition in the 7S-43B-7S sample by measuring the dynamic viscoelastic properties at more than 11 temperatures, including several in the transition region. A new procedure was developed for accurately measuring the sample temperature in a Weissenberg rheogoniometer. The transition is found to start at about 140°C and proceed over a narrow transition region from 140 to about 150°C. Data at all temperatures superimpose onto a single master curve only at high reduced frequencies. At low reduced frequencies, two characteristic branches of the master curve are formed. The data at temperatures below the transition region superimpose onto the upper branch where the dynamic viscosity η′(ω) is a strong function of ω, whereas the data at temperatures above the transition region superimpose onto the lower branch where η′(ω) is independent of ω. The data at temperatures within the transition region fall between the upper and lower branches, ordered according to their temperature positions. The apparent flow activation energy is found to be constant at about 22.8 kcal/mole below the transition region, but appears to decrease to about 17.4 kcal/mole above the transition region. The narrowness of the rheological transition far above the glass transition temperature of the polystyrene domains and the limiting linear viscoelastic behavior at low frequencies above the transition suggest an accompanying morphological transition rather than a gradual weakening of the polystyrene domains.
    Zusätzliches Material: 8 Ill.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...