Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1980-1984  (1)
  • 1983  (1)
  • Computational Chemistry and Molecular Modeling  (1)
Material
Years
  • 1980-1984  (1)
Year
Keywords
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Quantum Chemistry 24 (1983), S. 707-727 
    ISSN: 0020-7608
    Keywords: Computational Chemistry and Molecular Modeling ; Atomic, Molecular and Optical Physics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The applicability of the finite-order many-body perturbation theory to the electron correlation problem in extended one-dimensional systems is examined. The cyclic polyenes CNHN, N = 4ν + 2, ν = 1, 2, …, with the DNh geometry as described by both the Pariser-Parr-Pople and Hubbard Hamiltonians, are employed to model the metallic-like one-dimensional systems. The second-order perturbation theory contributions to the correlation energy are obtained with three different partitionings of the Hamiltonian (Hückel, M⊘ller-Plesset, and Epstein-Nesbet). The third- and fourth-order contributions are also calculated in special cases. A comparison with other methods is given wherever available. For the Hubbard Hamiltonian the asymptotic behavior of the perturbation theory expansion is examined numerically. It is shown that the finite-order perturbation expansion can provide reliable results for the correlation energy of one-dimensional systems even in the correlation region which corresponds to the spectroscopically determined physical value of the coupling constant.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...