Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1990-1994  (1)
  • 1980-1984  (2)
  • 1975-1979
  • 1994  (1)
  • 1984  (2)
Material
Years
  • 1990-1994  (1)
  • 1980-1984  (2)
  • 1975-1979
Year
  • 1
    Electronic Resource
    Electronic Resource
    Copenhagen : International Union of Crystallography (IUCr)
    Acta crystallographica 50 (1994), S. 302-316 
    ISSN: 1399-0047
    Source: Crystallography Journals Online : IUCR Backfile Archive 1948-2001
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Notes: The three-dimensional structure of human dicupric monooxalate lactoferrin, Cu2oxLf, has been determined to 2.0 Å resolution, using X-ray diffraction data collected by diffractometry to 2.5 Å resolution, and oscillation photography on a synchrotron source to 2.0 Å resolution. Difference electron-density maps calculated between Cu2oxLf and both dicupric lactoferrin, Cu2Lf, and diferric lactoferrin, Fe2Lf, showed that the oxalate had replaced a carbonate in the C-terminal binding site, and that, relative to Cu2Lf, there were no significant differences in the N-terminal site. The structure was then refined crystallographically by restrained least-squares methods. The final model, in which the r.m.s. deviation in bond distances is 0.017 Å, contains 5314 protein atoms (691 residues), two Cu2+ ions, one bicarbonate ion, one oxalate ion, 325 solvent molecules and one sugar residue. The crystallographic R factor of 0.193 is for 46 134 reflections in the range 8.0 to 2.0 Å resolution. The oxalate ion is coordinated to copper in a 1,2-bidentate fashion, and the added bulk of the anion results in the rearrangement of the side chains of nearby arginine and tyrosine residues. No other major alterations in the molecule can be observed, the overall protein structure being the same as that for Cu2Lf and Fe2Lf.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Chemical Kinetics 16 (1984), S. 1151-1160 
    ISSN: 0538-8066
    Keywords: Chemistry ; Physical Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The absolute rate constant for the OH + HCl reaction has been measured from 240 to 295 K utilizing the techniques of laser/flash photolysis-resonance fluorescence. The HCl concentrations were monitored continuously by ultraviloet and infrared spectrophotometry. The results can be fit to the following Arrhenius expression: \documentclass{article}\pagestyle{empty}\begin{document}$$k_1 = (4.6{\rm } \pm {\rm }0.3){\rm } \times {\rm }10^{ - 12} \exp [- (500{\rm } \pm {\rm }60)/T{\rm cm}^3 /{\rm molecule} \cdot {\rm s}$$\end{document} The rate constant values obtained in this study are 20-30% larger than those recommended previously for modeling of stratospheric chemistry.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Chemical Kinetics 16 (1984), S. 41-55 
    ISSN: 0538-8066
    Keywords: Chemistry ; Physical Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The absolute rate constants for the reactions of OH + HO2NO2 (1) and OH + HNO3 (2) have been measured with the technique of flash photolysis resonance fluorescence over the temperature ranges of 240-330 K at 760 torr He for reaction (1) and of 240-370 K at 50 and 760 torr He for reaction (2). Reactant concentrations were monitored continuously by ultraviolet and infrared spectrophotometry. The data can be fitted to the following Arrhenius expressions: \documentclass{article}\pagestyle{empty}\begin{document}$$ k_1 = \left( {5.9 \pm 0.4} \right) \times 10^{ - 13} \exp \left[ {{{\left( {650 \pm 30} \right)} \mathord{\left/ {\vphantom {{\left( {650 \pm 30} \right)} T}} \right. \kern-\nulldelimiterspace} T}} \right]{{{\rm cm}^{\rm 3} } \mathord{\left/ {\vphantom {{{\rm cm}^{\rm 3} } {{\rm molecule} \cdot {\rm s}}}} \right. \kern-\nulldelimiterspace} {{\rm molecule} \cdot {\rm s}}} $$\end{document} \documentclass{article}\pagestyle{empty}\begin{document}$$ {\rm CH}_{\rm 3} {\rm SiD}_{\rm 3} \mathop {\longrightarrow} \limits^3 {\rm CH}_{\rm 2} \raise1pt\hbox{=\kern-3.45 pt=} {\rm SiD}_{\rm 2} \left( {0.14} \right) $$\end{document} \documentclass{article}\pagestyle{empty}\begin{document}$$ k_2 = \left( {8.3 \pm 0.9} \right) \times 10^{ - 15} \exp \left[ {{{\left( {850 \pm 40} \right)} \mathord{\left/ {\vphantom {{\left( {850 \pm 40} \right)} T}} \right. \kern-\nulldelimiterspace} T}} \right]{{{\rm cm}^{\rm 3} } \mathord{\left/ {\vphantom {{{\rm cm}^{\rm 3} } {{\rm molecule} \cdot {\rm s}}}} \right. \kern-\nulldelimiterspace} {{\rm molecule} \cdot {\rm s}}} $$\end{document} These results are in very good agreement with recent studies of reaction (2), and also of reaction (1) at 295 K.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...