Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1985-1989  (4)
  • 1955-1959
  • 1985  (4)
  • 1
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 83 (1985), S. 2334-2336 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: As previously shown [M. Levy and J. P. Perdew, Phys. Rev. A (in press)], the customary Hohenberg–Kohn density functional, based on the universal functional F[ ρ], does not exhibit naively expected scaling properties. Namely, if ρλ=λ3ρ(λr) is the scaled density corresponding to ρ(r), the expected scaling, not satisfied, is T[ρλ]=λ2T[ρ] and V[ρλ]=λV[ρ], where T and V are the kinetic and potential energy components. By defining a new functional of ρ and λ, F[ ρ, λ], it is now shown how the naive scaling can be preserved. The definition is F[ρ(r), λ]=〈λ3N/2 Φminρλ (λr1... λrN)|Tˆ(r1...rN) +Vee(r1...rN)| λ3N/2Φminρλ(λr1...λrN)〉, where λ3N/2 Φminρλ(λr1... λrN) is that antisymmetric function Φ which yields ρλ(r)=λ3ρ(λr) and simultaneously minimizes 〈Φ|Tˆ(r1...rN) +λVee(r1...rN)|Φ〉. The corresponding variational principle is EvG.S.=Infλ, ρ(r){∫ drv(r) ρλ(r)+λ2T[ ρ(r)] +λVee[ ρ(r)]}, where EvG.S. is the ground-state energy for potential v(r). One is thus allowed to satisfy the virial theorem by optimum scaling just as if the naive scaling relations were correct for F[ ρ].
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 82 (1985), S. 3307-3315 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Orthonormal orbitals systematically constructed from the electron density are employed to obtain various closed expressions for approximate atomic energy functionals. A three-dimensional generalization of a construction originally due to Harriman is proposed. Numerical assessments are made of several new density functionals by evaluating them using accurate Hartree–Fock densities and by solving the corresponing Euler equations for electron density. The molecular virial theorem is stated and proved in a form particularly suitable for density functional theory.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Journal of the American Chemical Society 107 (1985), S. 6811-6814 
    ISSN: 1520-5126
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Quantum Chemistry 27 (1985), S. 731-741 
    ISSN: 0020-7608
    Keywords: Computational Chemistry and Molecular Modeling ; Atomic, Molecular and Optical Physics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: A constant-denominator perturbation formalism is developed employing a basis of circulant orbitals and a projected Møller-Plesset partitioning of the Hamiltonian operator. A formal justification for the classical Unsöld approximation is thereby provided. A calculation of correlation energy in the beryllium atom is carried out, and the results are compared with results obtained by the full configuration interaction method and conventional Møller-Plesset perturbation theory.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...