Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1985-1989  (2)
  • 1985  (2)
  • Polymer and Materials Science  (2)
  • Amino acid sequence
  • Life and Medical Sciences
Material
Years
  • 1985-1989  (2)
Year
Keywords
  • Polymer and Materials Science  (2)
  • Amino acid sequence
  • Life and Medical Sciences
  • Chemistry  (1)
  • Physics  (1)
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 30 (1985), S. 4337-4344 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The dynamic viscoelastic properties and thermal transition behavior of reaction injection molding (RIM) and cast polyurethane - isocyanurate elastomers have been studied as a function of various segments (soft and hard urethane, and hard isocyanurate) content. RIM and cast elastomers were prepared at different concentrations of soft and hard urethane, and hard isocyanurate segments. RIM elastomers with the higher isocyanate index (lower hard urethane and greater isocyanurate segment content) displayed an unchanged Tg (glass transition temperature of soft segment) and increasing Tgh (glass transition temperature of hard segment) related to the hard urethane and isocyanurate segments. This is due to the phase separation between the soft and the hard segments. Cast elastomers synthesized from the higher amount of 1,4-butanediol (greater hard urethane and less hard isocyanurate segment content) showed an increasing Tgs, decreasing Tgh of hard urethane segments, and an unchanged Tgh of isocyanurate segments. This is related to the phase mixing between the soft and the hard urethane segments and the phase separation of hard isocyanurate and hard urethane segments.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science: Polymer Chemistry Edition 23 (1985), S. 87-106 
    ISSN: 0360-6376
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Plasma polymerization of tetra fluoroethylene (TFE), perfluoro-2-butyl-tetrahydrofuran (PFBTHF), ethylene, and styrene were investigated in various combinations of monomer flow rates and discharge wattages for the substrate temperature range of -50 to 80°C. The polymer deposition rates can be generally expressed by k0 = Ae-bt, where k0 is the specific deposition rate given by k0 = (deposition rate)/(mass flow rate of monomer), A is the preexponential factor representing the extrapolated value of k0 at zero absolute temperature, and b is the temperature-dependence coefficient. It was found that the value of b is not dependent on the condensibility of monomer but depends largely on the group of monomer; that is, perfluorocarbons versus hydrocarbons. The values of A are dependent on domains of plasma polymerization. In the energy deficient region A is given by A = α(W/FM)n, where α is the proportionality constant, W is discharge wattage, FM is the mass flow rate, and n is close to unity. In the monomer deficient region A becomes a constant. The kinetic equation is discussed in view of the bicyclic rapid step-growth polymerization mechanisms.
    Additional Material: 16 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...