Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1520-4995
    Source: ACS Legacy Archives
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford [u.a.] : International Union of Crystallography (IUCr)
    Acta crystallographica 41 (1985), S. 68-69 
    ISSN: 1600-5759
    Source: Crystallography Journals Online : IUCR Backfile Archive 1948-2001
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Journal of materials science 4 (1985), S. 883-887 
    ISSN: 1573-4811
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    The @Anatomical Record 212 (1985), S. 250-254 
    ISSN: 0003-276X
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Autoradiographic and biochemical studies were used to demonstrate 1,25 (OH)2 vitamin D3 target cells in teeth. Incisor pulp of rats and molar pulp of humans were incubated in vitro with 3H-1,25 (OH)2 vitamin D3. Subsequent frozen-section autoradiography revealed a large population of cells in the pulp of both incisors and molars which selectively concentrated radioactivity in their nuclei. Extracts of incisor pulp from mature rats were found to bind 3H-1,25 (OH)2 vitamin D3 and this binding was displaceable with excess 1,25 (OH)2 vitamin D3. Sucrose density analysis revealed that the protein in tooth pulp which binds 1,25 (OH)2 vitamin D3 sediments at 3.2-3.5S. The 1,25 (OH)2 vitamin D3 receptor of intestine and kidney also sediments in this region, indicating that the 1,25 (OH)2 vitamin D3 binding protein of tooth pulp is similar to that found in other target organs. These autoradiographic and biochemical data indicate that pulpal cells of mature rat and human teeth contain receptors for 1,25 (OH)2 vitamin D3.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    The @Anatomical Record 212 (1985), S. 301-306 
    ISSN: 0003-276X
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Target cells for 1,25(OH)2 vitamin D3 metabolites are identified in developing rodent teeth by the use of thaw-mount autoradiography. Following the injection of [26, 27-3H]-1,25(OH)2 vitamin D3 into 18-day- and 20-day-old fetal rats and neonatal mice, nuclear concentration of radioactivity is found in different cell types. In incisors of both animal groups, strong nuclear labeling is present predominantly in pulp cells, while relatively weakly labeled cells are found in the layers of odontoblasts, ameloblasts, and stratum intermedium. In molars, nuclear labeling is absent in fetal rats, but is present in 2-day-old neonates in pulp cells and cells in the layers of stratum intermedium of the first molars, but not in the second molars. The absence of labeled pulp cells in the progenitor regions of incisors and in molars of 20-day-old fetal rats, and differential ontogenic appearance of labeled pulp cells in molars, indicates that there is a critical period of receptor emergence. The finding that labeled pulp cells exist in the regions of incisors and molars where secretory odontoblasts are present suggests that nuclear uptake of 1,25(OH)2 vitamin D3 is related to cell maturation and differentiation, and topographically related to the formation of dentin. The results further suggest that, in contrast to bone, the predominant effect of 1,25(OH)2 vitamin D3 is not on tooth cells which are directly involved in the formation of calcified tissue, i.e., ameloblasts and odontoblasts, but rather on supporting tissues such as pulp cells and stratum intermedium.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Bioelectromagnetics 6 (1985), S. 305-312 
    ISSN: 0197-8462
    Keywords: 340 MHz and 900 MHz ; microwave radiation ; temperature ; fluoresence probes ; trinitrobenzene sulfonic acid ; erythrocytes ; Life and Medical Sciences ; Occupational Health and Environmental Toxicology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Physics
    Notes: By use of fluorescence probes 1-anilinonaphthalene-8-sulfonic acid, 2-toluidinylnaphthal-ene-6-sulfonate, pyrene, perylene and chemical label phosphatidylethanolamine 2,4,6-trinitrobenzele sulfonic acid, the effect of microwave radiation on the erythrocyte membrane was studied. The studies with the fluorescence probes were carried out on erythrocyte ghosts and with 2,4,6-trinitrobenzene sulfonic acid on whole erythrocytes. The fluorescence was measured during irradiation of the membranes with 340-MHz microwaves at an SAR of 100 W/kg. Trinitrophenylation of phosphatidylethanolamine from whole erythrocytes was performed simultaneously with microwave irradiation at 900 MHz (10 mW/cm2). It was shown that the microwave field decreased lipid viscosity, altered the structural state of lipid-protein contact regions, and decreased the protein shielding of lipids. These changes corresponded to those produced by thermal action of microwaves.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...