Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1985-1989  (3)
  • 1986  (3)
  • Chemistry  (3)
Material
Years
  • 1985-1989  (3)
Year
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 32 (1986), S. 4423-4437 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The effect of pressure on miscibility and phase separation in blends of random copolymers of ortho- and para-fluorostyrene, P(o-FS-co-p-FS) and poly(2,6-dimethyl-1,4-phenylene oxide), PPO, has been studied by differential thermal analysis (DTA) at pressures up to 300 MPa. At 200 MPa the copolymers containing from 10 to 38 mol% p-FS are miscible with PPO below 230°C using the customary criterion of a single calorimetric glass transition temperature (Tg). Each blend undergoes phase separation upon annealing at higher temperatures at both atmospheric and elevated pressures indicating the presence of a lower critical solution temperature (LCST). When the phase behaviors of the 50/50 wt% blends are examined as a function of temperature and copolymer composition, a symmetric miscibility “window” can be observed in the resulting temperature-composition diagram with a maximum at about 22 mol% p-FS. In a complementary set of experiments, the pressure dependence of the phase boundary for the blend of PPO and P(o-FS-co-p-FS) in which the copolymer contained 29 mol% p-FS was studied. The temperature minimum of the phase boundary is at about 50 wt% PPO and is independent of pressure. The consolute temperature, Tc, increases at about 0.10°C/MPa up to 200 MPa and then becomes independent of pressure to reach an asymptotic value at around 270°C. Similar behavior is also observed for blends in which the copolymer composition contains either 16 or 23 mol% p-FS. In these blends the decrease of dTc/dP at higher pressures may indicate that the negative volume of mixing approaches zero above 200 MPa. This study shows therefore, that pressure no longer plays a role in increasing the miscibility above 200 MPa.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 24 (1986), S. 2345-2357 
    ISSN: 0887-6266
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The effect of pressure on the miscibility of blends of poly(2,6-dimethyl-l,4-phenylene oxide) (PPO) with a random copolymer of styrene and para-fluorostyrene, P(S-co-p-FS), has been studied by high pressure differential thermal analysis (HPDTA). P(S-co-p-FS) copolymers less than 36 mole % p-FS are miscible with PPO in all proportions irrespective of pressure up to 200 MPa, using the customary criterion of a single calorimetric glass relaxation. P(S-co-p-FS) copolymers containing 40 to 50 mole % p-FS undergo phase separation upon annealing at elevated temperatures, indicating the existence of a lower critical solution temperature (LCST). In these blends, pressure displaces the phase boundary associated with the LCST to higher temperatures causing an apparent increase in polymer miscibility. The phase diagram for the blend of PPO and P(S-co-p-FS) containing 46 mole % p-FS, shows that the critical composition at about 50 wt % PPO does not change with pressure, but the consolute temperature Tc increases with increasing pressure. The pressure dependence of the LCST (dTc/dP) of this system is about 0.35°C/MPa.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 24 (1986), S. 2793-2804 
    ISSN: 0887-6266
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Electron diffraction patterns of highly oriented poly(p-phenylene vinylene) films obtained by the soluble polymeric precursor route are interpreted on the basis of a monoclinic unit cell containing two monomer units: c (chain axis) = 0.658 nm, a = 0.790 nm, b = 0.605 nm, α ≃ 123°. The molecules are nearly perfectly oriented along the stretching direction but exhibit partial axial translational disorder.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...