Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1985-1989  (2)
  • 1980-1984
  • 1987  (2)
Material
Years
  • 1985-1989  (2)
  • 1980-1984
Year
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Chemical Kinetics 19 (1987), S. 851-867 
    ISSN: 0538-8066
    Keywords: Chemistry ; Physical Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Values for 〈ΔEdown〉, the average downward energy transferred from the reactant to the bath gas upon collision, have been obtained for highly vibrationally excited undeuterated and per-deuterated isopropyl bromide with the bath gases Ne, Xe, C2H4, and C2D4, at ca. 870 K. The technique of pressure-dependent very low-pressure pyrolysis (VLPP) was used to obtain the data. For C3H7Br, the 〈ΔEdown〉 values (cm-1) are 490 (Ne), 540 (Xe), 820 (C2H4), and 740 (C2D4), and for C3D7Br, 440 (Ne), 570 (Xe), 730 (C2H4), and 810 (C2D4). The uncertainties in these values are ca. ±10%. The 〈ΔEdown〉 values for the inert bath gases Ne and Xe show excellent agreement with the theoretical predictions of the semi-empirical biased random walk model for monatomic/substrate collisional energy exchange [J. Chem. Phys., 80, 5501 (1984)]. The relative effects of deuteration of the reactant molecule on 〈ΔEdown〉 also compare favorably with the predictions of this theoretical model. Extrapolated high-pressure rate coefficients (s-1) for the thermal decomposition of reactant are 1013.6±0.3 exp(-200 ± 8 kJ mol-1/RT) for C3H7Br and 1013.9±0.3 exp(-207 ± 8 kJ mol±1/RT) for C3D7Br, which are consistent with previous studies and the expected isotope effect.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Chemical Kinetics 19 (1987), S. 373-389 
    ISSN: 0538-8066
    Keywords: Chemistry ; Physical Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The average downward energy transfer (〈Δ Edown〉) is obtained for highly vibrationally excited acetyl chloride with Ne and C2H4 bath gases at ca. 870 K. Data are obtained by the technique of very low-pressure pyrolysis (VLPP). Fitting these data by solution of the appropriate reaction-diffusion integrodifferential master equation yields the gas/gas collisional energy transfer parameters: 〈Δ Edown〉 values are 220 ± 10 cm-1 (Ne bath gas) and 330 ± 20 cm-1 (C2H4).These energy transfer quantities are much less than those predicted by statistical theories, or those observed for similar sized molecules such as CH3CH2Cl. These results are explained by the qualitative predictions of the biased random walk model wherein the fundamental mechanism of energy transfer is the multiple interactions between the bath gas and the individual atoms of the reactant molecule, during the course of the collision event. The charge distribution of acetyl chloride decreases the number of such interactions, thereby reducing the amount of energy transferred per collision.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...