Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1985-1989  (2)
  • 1987  (2)
  • Axon growth  (1)
  • Drosophila
  • Life and Medical Sciences
  • 1
    ISSN: 1432-0568
    Keywords: Basilar pons ; Dendrogenesis ; Neonatal ; Axon growth ; Cerebellum
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The present study provides data on temporal factors that may play a role in the development of precerebellar-cerebellar circuits in the North American opossum. In this study the basilar pons and cerebellum are analyzed from birth, 12–13 days after conception, to approximately postnatal day (PD) 80 at which time the brainstem and cerebellum have a mature histological appearance. In Nissl preparations, the basilar pons was first seen at PD 7 as a small cluster of tightly packed cells. Analysis of Golgi impregnations revealed that dendritic growth occurred between PD 25–80. During this period, dendrites gradually increased in length and in the complexity of their branching pattern. Horseradish peroxidase (HRP) was placed into the cerebellar and cerebral cortices in order to examine the development of efferent and afferent projections of the basilar pons, respectively. Evidence for the growth of pontine axons into the cerebellum was first detected on PD 17. Neurons located dorsally within the basilar pons appear to be the first neurons retrogradely labeled with horseradish peroxidase. By PD 27 retrogradely labeled neurons are found throughout the basilar pons. Afferent fibers from the cerebral cortex are not seen within the neuropil of the nucleus until after PD 25 and by PD 29, they have greatly expanded their terminal fields. Degeneration techniques reveal that afferent fibers from the cerebellum arrive by PD 19 and increase in number until PD 30 when their adult distribution is achieved. These data suggest that the time of afferent arrival from the cerebral cortex and deep cerebellar nuclei is closely correlated in time with the initiation of dendritic maturation and the outgrowth of pontocerebellar axons. Afferent axons from the cerebral cortex and deep cerebellar nuclei reach the basilar pons and afferents from the basilar pons grow into the cerebellum when the dendrites of the respective target neurons are very immature. Thus, the time of axon arrival in these circuits may be an important factor in determining their synaptic location on individual neurons. The data derived from the present study is compared to those obtained in previous studies on the inferior olive. The results of this comparison provide evidence for a similar sequence of events, but a differential timetable for the development of specific connections within precerebellar-cerebellar circuits.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Journal of chemical ecology 13 (1987), S. 2069-2081 
    ISSN: 1573-1561
    Keywords: Drosophila ; D. mojavensis ; D. nigrospiracula ; D. mettleri ; Diptera ; Drosophilidae ; cactus ; alkaloids ; viability ; development ; longevity ; host-plant relationships
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract Drosophila mettleri is a soil-breeding, cactophilic drosophilid which lives in the Sonoran Desert. Several chemical constituents of cacti in this region have been identified as having major roles in insect-host plant relationships involvingDrosophila. For example, isoquinoline alkaloids, which are present in senita cactus, have been shown to be toxic to seven of the nine species tested. The two tolerant species areD. pachea, the normal resident, andD. mettleri. Necroses of senita cacti are often used as feeding substrates byD. mettleri adults, but this species has never been reared from senita rots. Soil, which have been soaked by juice from saguaro and cardón rots, are the typical breeding substrates of this species. The tissues of both of these cacti also contain alkaloids, chemically related to those in senita, but at much lower concentrations. Alkaloid concentration in saguaro-soaked soil was found to be 1.4–27 times the average concentration in fresh tissue. Alkaloids were extracted from saguaro tissue and used in tests of larva-to-adult viability, developmental rate, and adult longevity. Elevated concentrations of saguaro alkaloids had no significant effect on the longevity ofD. mettleri, but significantly reduced the longevity ofD. nigrospiracula andD. mojavensis, two nonsoil breeding cactophilic species. Viability and developmental rates of all three species were affected, but the effect onD. nigrospiracula was comparatively greater. It is argued that the adaptations that allowD. mettleri to utilize the saguaro soil niche also convey tolerance to alkaloids present in senita tissue. The ability to utilize senita necroses as feeding substrates represents an ecological advantage to D. mettleri, in that the density of potential feeding sites is increased as compared to species which are more specific in their host-plant relationships.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...